【題目】朗讀者自開(kāi)播以來(lái),以其厚重的文化底蘊(yùn)和感人的人文情懷,感動(dòng)了數(shù)以億計(jì)的觀眾,岳池縣某中學(xué)開(kāi)展“朗讀”比賽活動(dòng),九年級(jí)、班根據(jù)初賽成績(jī),各選出5名選手參加復(fù)賽,兩個(gè)班各選出的5名選手的復(fù)賽成績(jī)滿分為100分如圖所示.
平均數(shù) | 中位數(shù) | 眾數(shù) | |
九班 | 85 | 85 | |
九班 | 80 |
根據(jù)圖示填寫(xiě)表格;
結(jié)合兩班復(fù)賽成績(jī)的平均數(shù)和中位數(shù),分析哪個(gè)班級(jí)的復(fù)賽成績(jī)較好;
如果規(guī)定成績(jī)較穩(wěn)定班級(jí)勝出,你認(rèn)為哪個(gè)班級(jí)能勝出?說(shuō)明理由.
【答案】(1)詳見(jiàn)解析;(2)九班成績(jī)好些;(3)九班的成績(jī)更穩(wěn)定,能勝出.
【解析】
由條形圖得出兩班的成績(jī),根據(jù)中位數(shù)、平均數(shù)及眾數(shù)分別求解可得;
由平均數(shù)相等得前提下,中位數(shù)高的成績(jī)好解答可得;
分別計(jì)算兩班成績(jī)的方差,由方差小的成績(jī)穩(wěn)定解答.
解:九班5位同學(xué)的成績(jī)?yōu)椋?/span>75、80、85、85、100,
其中位數(shù)為85分;
九班5位同學(xué)的成績(jī)?yōu)椋?/span>70、100、100、75、80,
九班的平均數(shù)為分,其眾數(shù)為100分,
補(bǔ)全表格如下:
平均數(shù) | 中位數(shù) | 眾數(shù) | |
九班 | 85 | 85 | 85 |
九班 | 85 | 80 | 100 |
九班成績(jī)好些,
兩個(gè)班的平均數(shù)都相同,而九班的中位數(shù)高,
在平均數(shù)相同的情況下,中位數(shù)高的九班成績(jī)好些.
九班的成績(jī)更穩(wěn)定,能勝出.
分,
分,
,
九班的成績(jī)更穩(wěn)定,能勝出.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知CD平分∠ACB,∠1=∠2.
(1)求證:DE∥AC;
(2)若∠3=30°,∠B=25°,求∠BDE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,直線AB和CD與直線MN相交.
(1)如圖①,EG平分∠BEF,FH平分∠DFE(平分的是一對(duì)同旁內(nèi)角),則∠1與∠2滿足________時(shí),AB∥CD;
(2)如圖②,EG平分∠MEB,FH平分∠DFE(平分的是一對(duì)同位角),則∠1與∠2滿足________時(shí),AB∥CD;
(3)如圖③,EG平分∠AEF,FH平分∠DFE(平分的是一對(duì)內(nèi)錯(cuò)角),則∠1與∠2滿足什么條件時(shí),AB∥CD?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】以坐標(biāo)原點(diǎn)O為圓心,作半徑為2的圓,若直線y=﹣x+b與⊙O相交,則b的取值范圍是( )
A.0≤b<2
B.﹣2
C.﹣2 2
D.﹣2 <b<2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,⊙A的圓心A的坐標(biāo)為(﹣1,0),半徑為1,點(diǎn)P為直線y=﹣ x+3上的動(dòng)點(diǎn),過(guò)點(diǎn)P作⊙A的切線,切點(diǎn)為Q,則切線長(zhǎng)PQ的最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知AB是⊙O的直徑,AT是⊙O的切線,∠ABT=50°,BT交⊙O于點(diǎn)C,E是AB上一點(diǎn),延長(zhǎng)CE交⊙O于點(diǎn)D.
(1)如圖①,求∠T和∠CDB的大;
(2)如圖②,當(dāng)BE=BC時(shí),求∠CDO的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】【問(wèn)題學(xué)習(xí)】小蕓在小組學(xué)習(xí)時(shí)問(wèn)小娟這樣一個(gè)問(wèn)題:已知α為銳角,且sinα= ,求sin2α的值.小娟是這樣給小蕓講解的:
構(gòu)造如圖1所示的圖形,在⊙O中,AB是直徑,點(diǎn)C在⊙O上,所以∠ACB=90°,作CD⊥AB于D.設(shè)∠BAC=α,則sinα= ,可設(shè)BC=x,則AB=3x,….
(1)【問(wèn)題解決】
請(qǐng)按照小娟的思路,利用圖1求出sin2α的值;(寫(xiě)出完整的解答過(guò)程)
(2)如圖2,已知點(diǎn)M,N,P為⊙O上的三點(diǎn),且∠P=β,sinβ= ,求sin2β的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,小明在大樓30米高(即PH=30米)的窗口P處進(jìn)行觀測(cè),測(cè)得山坡上A處的俯角為15°,山腳B處的俯角為60°,已知該山坡的坡度i(即tan∠ABC)為1: ,點(diǎn)P、H、B、C、A在同一個(gè)平面上.點(diǎn)H、B、C在同一條直線上,且PH⊥HC.
(1)山坡坡角(即∠ABC)的度數(shù)等于度;
(2)求山坡A、B兩點(diǎn)間的距離(結(jié)果精確到0.1米).
(參考數(shù)據(jù): ≈1.414, ≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,AB=2,∠BAD=60°,過(guò)點(diǎn)D作DE⊥AB于點(diǎn)E,DF⊥BC于點(diǎn)F.
(1)如圖1,連接AC分別交DE、DF于點(diǎn)M、N,求證:MN= AC;
(2)如圖2,將△EDF以點(diǎn)D為旋轉(zhuǎn)中心旋轉(zhuǎn),其兩邊DE′、DF′分別與直線AB、BC相交于點(diǎn)G、P,連接GP,當(dāng)△DGP的面積等于3 時(shí),求旋轉(zhuǎn)角的大小并指明旋轉(zhuǎn)方向.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com