【題目】如圖,D是△ABC外接圓上的動(dòng)點(diǎn),且B,D位于AC的兩側(cè),DE⊥AB,垂足為E,DE的延長(zhǎng)線交此圓于點(diǎn)F.BG⊥AD,垂足為G,BG交DE于點(diǎn)H,DC,F(xiàn)B的延長(zhǎng)線交于點(diǎn)P,且PC=PB.
(1)求證:BG∥CD;
(2)設(shè)△ABC外接圓的圓心為O,若AB=DH,∠OHD=80°,求∠BDE的大。
【答案】(1)證明見解析;(2)∠BDE的度數(shù)為20°或40°.
【解析】
(1)PC=PB,得到∠PCB=∠PBC,根據(jù)圓內(nèi)接四邊形的性質(zhì),得到∠BAD+∠BCD=180°,根據(jù)同角的補(bǔ)角相等得到∠BAD=∠PCB,根據(jù)圓周角定理得到∠BAD=∠BFD,等量代換得到∠BFD=∠PCB=∠PBC,即可證明BC∥DF,根據(jù)AC是⊙O的直徑,得到
∠ADC=90°,根據(jù)BG⊥AD,得到∠ADC=∠AGB,即可證明BG∥CD;
(2)分①當(dāng)點(diǎn)O在DE的左側(cè)和②當(dāng)點(diǎn)O在DE的右側(cè)兩種情況進(jìn)行討論.
(1)證明:如圖1,
∵PC=PB,
∴∠PCB=∠PBC,
∵四邊形ABCD內(nèi)接于圓,
∴∠BAD+∠BCD=180°,
∵∠BCD+∠PCB=180°,
∴∠BAD=∠PCB,
∵∠BAD=∠BFD,
∴∠BFD=∠PCB=∠PBC,
∴BC∥DF,
∵DE⊥AB,
∴∠DEB=90°,
∴∠ABC=90°,
∴AC是⊙O的直徑,
∴∠ADC=90°,
∵BG⊥AD,
∴∠AGB=90°,
∴∠ADC=∠AGB,
∴BG∥CD;
(2)由(1)得:BC∥DF,BG∥CD,
∴四邊形BCDH是平行四邊形,
∴BC=DH,
在Rt△ABC中,∵
∴tan∠ACB=
∴∠ACB=60°,∠BAC=30°,
∴∠ADB=60°,
∴
①當(dāng)點(diǎn)O在DE的左側(cè)時(shí),如圖2,作直徑DM,連接AM、OH,則∠DAM=90°,
∴∠AMD+∠ADM=90°
∵DE⊥AB,
∴∠BED=90°,
∴∠BDE+∠ABD=90°,
∵∠AMD=∠ABD,
∴∠ADM=∠BDE,
∵
∴DH=OD,
∴∠DOH=∠OHD=80°,
∴∠ODH=20°
∵∠ADB=60°,
∴∠ADM+∠BDE=40°,
∴∠BDE=∠ADM=20°,
②當(dāng)點(diǎn)O在DE的右側(cè)時(shí),如圖3,作直徑DN,連接BN,
由①得:∠ADE=∠BDN=20°,∠ODH=20°,
∴∠BDE=∠BDN+∠ODH=40°,
綜上所述,∠BDE的度數(shù)為20°或40°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=3,AB=5.點(diǎn)P從點(diǎn)A出發(fā),以每秒5個(gè)單位
長(zhǎng)度的速度沿AC方向運(yùn)動(dòng),過點(diǎn)P作PQ⊥AB于點(diǎn)Q,當(dāng)點(diǎn)Q和點(diǎn)B重合時(shí),點(diǎn)P停止運(yùn)動(dòng),以AP和AQ為邊作APHQ.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒(t>0)
(1)線段PQ的長(zhǎng)為 .(用含t的代數(shù)式表示)
(2)當(dāng)點(diǎn)H落在邊BC上時(shí),求t的值.
(3)當(dāng)APHQ與△ABC的重疊部分圖形為四邊形時(shí),設(shè)四邊形的面積為S,求S與t之間的函數(shù)關(guān)系式.
(4)過點(diǎn)C作直線CD⊥AB于點(diǎn)D,當(dāng)直線CD將APHQ分成兩部分圖形的面積比為1:7時(shí),直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,∠A=36°,∠C=72°,∠ABC的平分線交AC于D,則圖中共有等腰三角形( 。
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,∠BAC=90°,四邊形EBOC是平行四邊形,EB交⊙O于點(diǎn)D,連接CD并延長(zhǎng)交AB的延長(zhǎng)線于點(diǎn)F.
(1)求證:CF是⊙O的切線;
(2)若∠F=30°,EB=6,求圖中陰影部分的面積(結(jié)果保留根號(hào)和π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖△ABC內(nèi)接于⊙O,∠B=60°,CD是⊙O的直徑,點(diǎn)P是CD延長(zhǎng)線上一點(diǎn),且AP=AC.
(1)求證:PA是⊙O的切線;
(2)若PD=,求⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,圖2,圖3,在中,分別以,為邊,向外作正三角形,正四邊形,正五邊形,,相交于點(diǎn)O.
①如圖1,求證:≌;
②探究:如圖1,________;如圖2,_______;如圖3,_______;
(2)如圖4,已知:,是以為邊向外所作正n邊形的一組鄰邊:,是以為邊向外所作正n邊形的一組鄰邊,,的延長(zhǎng)相交于點(diǎn)O.
①猜想:如圖4, (用含n的式子表示);
②根據(jù)圖4證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】山西特產(chǎn)專賣店銷售核桃,其進(jìn)價(jià)為每千克40元,按每千克60元出售,平均每天可售出100千克,后來經(jīng)過市場(chǎng)調(diào)查發(fā)現(xiàn),單價(jià)每降低2元,則平均每天的銷售可增加20千克,若該專賣店銷售這種核桃要想平均每天獲利2240元,請(qǐng)回答:
(1)每千克核桃應(yīng)降價(jià)多少元?
(2)在平均每天獲利不變的情況下,為盡可能讓利于顧客,贏得市場(chǎng),該店應(yīng)按原售價(jià)的幾折出售?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象與x軸交于(, 0)和(, 0), 其中,與軸交于正半軸上一點(diǎn).下列結(jié)論:①;②;③a>b;④.其中正確結(jié)論的序號(hào)是____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,和分別平分和的外角,一動(dòng)點(diǎn)在上運(yùn)動(dòng),過點(diǎn)作的平行線與和的角平分線分別交于點(diǎn)和點(diǎn).
求證:當(dāng)點(diǎn)運(yùn)動(dòng)到什么位置時(shí),四邊形為矩形,說明理由;
在第題的基礎(chǔ)上,當(dāng)滿足什么條件時(shí),四邊形為正方形,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com