(2012•包頭)如圖,過(guò)?ABCD的對(duì)角線BD上一點(diǎn)M分別作平行四邊形兩邊的平行線EF與GH,那么圖中的?AEMG的面積S1與?HCFM的面積S2的大小關(guān)系是( 。
分析:根據(jù)平行四邊形的性質(zhì)和判定得出平行四邊形GBEP、GPFD,證△ABD≌△CDB,得出△ABD和△CDB的面積相等;同理得出△BEM和△MHB的面積相等,△GMD和△FDM的面積相等,相減即可求出答案.
解答:解:∵四邊形ABCD是平行四邊形,EF∥BC,HG∥AB,
∴AD=BC,AB=CD,AB∥GH∥CD,AD∥EF∥BC,
∴四邊形HBEM、GMFD是平行四邊形,
在△ABD和△CDB中;
AB=CD
BD=DB
DA=CB
,
∴△ABD≌△CDB,
即△ABD和△CDB的面積相等;
同理△BEM和△MHB的面積相等,△GMD和△FDM的面積相等,
故四邊形AEMG和四邊形HCFM的面積相等,即S1=S2
故選C.
點(diǎn)評(píng):本題考查了平行四邊形的性質(zhì)和判定,全等三角形的性質(zhì)和判定的應(yīng)用,解此題的關(guān)鍵是求出△ABD和△CDB的面積相等,△BEP和△PGB的面積相等,△HPD和△FDP的面積相等,注意:如果兩三角形全等,那么這兩個(gè)三角形的面積相等
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•包頭)如圖,攔水壩的橫斷面為梯形ABCD,壩頂寬AD=5米,斜坡AB的坡度i=1:3(指坡面的鉛直高度AE與水平寬度BE的比),斜坡DC的坡度i=1:1.5,已知該攔水壩的高為6米.
(1)求斜坡AB的長(zhǎng);
(2)求攔水壩的橫斷面梯形ABCD的周長(zhǎng).
(注意:本題中的計(jì)算過(guò)程和結(jié)果均保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•包頭)如圖,直線y=
1
2
x-2與x軸、y軸分別交于點(diǎn)A和點(diǎn)B,點(diǎn)C在直線AB上,且點(diǎn)C的縱坐標(biāo)為-1,點(diǎn)D在反比例函數(shù)y=
k
x
的圖象上,CD平行于y軸,S△OCD=
5
2
,則k的值為
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•包頭)如圖,△ABC內(nèi)接于⊙O,∠BAC=60°,⊙O的半徑為2,則BC的長(zhǎng)為
2
3
2
3
(保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•包頭)如圖,在平面直角坐標(biāo)系中,點(diǎn)A在x軸上,△ABO是直角三角形,∠ABO=90°,點(diǎn)B的坐標(biāo)為(-1,2),將△ABO繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到△A1B1O,則過(guò)A1,B兩點(diǎn)的直線解析式為
y=3x+5
y=3x+5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•包頭)如圖,將△ABC紙片的一角沿DE向下翻折,使點(diǎn)A落在BC邊上的A′點(diǎn)處,且DE∥BC,下列結(jié)論:
①∠AED=∠C;②
A′D
DB
=
A′E
EC
;③BC=2DE;④S四邊形ADA′E=S△DBA′+S△EA′C
其中正確結(jié)論的個(gè)數(shù)是
4
4
個(gè).

查看答案和解析>>

同步練習(xí)冊(cè)答案