【題目】計(jì)算下列各式的值:
(1)( + )﹣
(2)(﹣3)2﹣|﹣ |+ ﹣
(3)x2﹣121=0
(4)(x﹣5)3+8=0.
【答案】
(1)解:原式= + ﹣ =
(2)解:原式=9﹣ + ﹣3=6
(3)解:方程變形得:x2=121,
開方得:x=±11
(4)解:方程變形得:(x﹣5)3=﹣8,
開立方得:x﹣5=﹣2,
解得:x=3
【解析】(1)原式去括號合并即可得到結(jié)果;(2)原式第一項(xiàng)利用乘方的意義化簡,第二項(xiàng)利用絕對值的代數(shù)意義化簡,最后一項(xiàng)利用算術(shù)平方根定義計(jì)算即可得到結(jié)果;(3)方程變形后,利用平方根定義開方即可求出解;(4)方程變形后,利用立方根定義開立方即可求出解.
【考點(diǎn)精析】關(guān)于本題考查的平方根的基礎(chǔ)和立方根,需要了解如果一個數(shù)的平方等于a,那么這個數(shù)就叫做a的平方根(或二次方跟);一個數(shù)有兩個平方根,他們互為相反數(shù);零的平方根是零;負(fù)數(shù)沒有平方根;如果一個數(shù)的立方等于a,那么這個數(shù)就叫做a 的立方根(或a 的三次方根);一個正數(shù)有一個正的立方根;一個負(fù)數(shù)有一個負(fù)的立方根;零的立方根是零才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一家商店因換季將某種服裝打折銷售,如果每件服裝按標(biāo)價的5折出售將虧本20元,而按標(biāo)價的8折出售將賺40元.為了保證不虧本,最少要打 折( )
A. 6 B. 6.5 C. 7 D. 7.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的袋中裝有紅、黃、白三種顏色的球共100個,它們除顏色外都相同,其中黃球個數(shù)是白球的3倍多10個.已知從袋中摸出一個球是紅球的概率是 .
(1)求袋中紅球的個數(shù);
(2)求從袋中摸出一個球是白球的概率;
(3)取走5個球(其中沒有紅球)求從剩余球中摸出球是紅球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】實(shí)驗(yàn)的總次數(shù)、頻數(shù)及頻率三者的關(guān)系是( 。
A. 頻數(shù)越大,頻率越大
B. 頻數(shù)與總次數(shù)成正比
C. 總次數(shù)一定時,頻數(shù)越大,頻率可達(dá)到很大
D. 頻數(shù)一定時,頻率與總次數(shù)成反比
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),已知點(diǎn)A(1,2),在y軸的正半軸上確定點(diǎn)P,使△AOP為等腰三角形,則點(diǎn)P的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校在踐行“社會主義核心價值觀”演講比賽中,對名列前20名的選手的綜合分?jǐn)?shù)m進(jìn)行分組統(tǒng)計(jì),結(jié)果如表所示:
組號 | 分組 | 頻數(shù) |
一 | 6≤m<7 | 2 |
二 | 7≤m<8 | 7 |
三 | 8≤m<9 | a |
四 | 9≤m≤10 | 2 |
(1)求a的值.
(2)若用扇形統(tǒng)計(jì)圖來描述,求分?jǐn)?shù)在8≤m<9內(nèi)所對應(yīng)的扇形的圓心角的度數(shù).
(3)將在第一組內(nèi)的兩名選手記為A1,A2,在第四組內(nèi)的兩名選手記為B1,B2, 從第一組和第四組中隨機(jī)選取2名選手進(jìn)行調(diào)研座談,求第一組至少有1名選手被選中的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個兩位數(shù),十位數(shù)字是a,個位數(shù)字是b,則這個兩位數(shù)是( )
A.ab
B.a+b
C.10a+b
D.10b+a
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(a,0)、B(b,0),且(a+4)2+|b﹣2|=0.
(1)求a、b的值.
(2)在y軸的正半軸上找一點(diǎn)C,使得三角形ABC的面積是15,求出點(diǎn)C的坐標(biāo).
(3)過(2)中的點(diǎn)C作直線MN∥x軸,在直線MN上是否存在點(diǎn)D,使得三角形ACD的面積是三角形ABC面積的 ?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com