【題目】如圖所示,在中,,垂足為,平分,點(diǎn)為的中點(diǎn),點(diǎn)為上的一點(diǎn),連接、、、,.
(1)若,,求和的長.
(2)求證:.
【答案】(1)BE=3,;(2)證明見解析
【解析】
(1)要求BE的長,在Rt△ABE中,利用勾股定理計(jì)算時(shí),已經(jīng)知道了AE的長,必須先求出AB的長,而在中,AB=CD,所以要求出CD的長,根據(jù)平行四邊形的的性質(zhì)和DE平分,還有F是EC的中點(diǎn),易證明,這樣就可求出BE的值;而要求FG的長,只要通過證明,得到CG=CF,由(1)中,得到點(diǎn)G是CD的中點(diǎn),從而可得FG是△EDC的中位線,利用中位線的性質(zhì),在利用勾股定理求出線段DE的前提下易求出FG的值;
(2)延長AG與BC的延長線交于點(diǎn)H ,由(1)中得,只要證明即可.
(1)∵四邊形為平行四邊形,∴,,.∴.
∵平分,∴,∴.∴.
∵點(diǎn)為的中點(diǎn),∴,∴.
在中,由勾股定理得,∴.
在中,由勾股定理得.
∵,,,∴.∴.∴,∴是的中位線.∴.
(2)證明:如圖所示,延長,交于點(diǎn).
∵,∴,.
∵,∴.∴.
∵,∴.∴.
∵,∴,∴.
∵,∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)興趣小組開展了一次活動(dòng),過程如下:設(shè).現(xiàn)把小棒依次擺放在兩射線之間,并使小棒兩端分別落在射線、上.
活動(dòng)一、如圖甲所示,從點(diǎn)開始,依次向右擺放小棒,使小棒與小棒在端點(diǎn)處互相垂直(為第1根小棒)
數(shù)學(xué)思考:
(1)小棒能無限擺下去嗎?答: (填“能”或“不能”)
(2)設(shè),求的度數(shù);
活動(dòng)二:如圖乙所示,從點(diǎn)開始,用等長的小棒依次向右擺放,其中為第一根小棒,且.
數(shù)學(xué)思考:
(3)若已經(jīng)擺放了3根小棒,則 , , ;(用含的式子表示)
(4)若只能擺放5根小棒,則的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是用4個(gè)全等的直角三角形與1個(gè)小正方形鑲嵌而成的正方形圖案,已知大正方形面積為49,小正方形面積為4,若用,表示直角三角形的兩直角邊(),下列四個(gè)說法:
①,②,③,④.
其中說法正確的是 …………………………………………………………( )
A. ①② B. ①②③ C. ①②④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分9分)如圖,點(diǎn)O為Rt△ABC斜邊AB上的一點(diǎn),以OA為半徑的⊙O與BC切于點(diǎn)D,與AC交于點(diǎn)E,連接AD.
(1)求證:AD平分∠BAC;
(2)若∠BAC = 60°,OA = 2,求陰影部分的面積(結(jié)果保留).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y=的圖象上,點(diǎn)A是該圖象第一象限分支上的動(dòng)點(diǎn),連結(jié)AO并延長交另一支于點(diǎn)B,以AB為斜邊作等腰直角△ABC,頂點(diǎn)C在第四象限,AC與x軸交于點(diǎn)P,連結(jié)BP,在點(diǎn)A運(yùn)動(dòng)過程中,當(dāng)BP平分∠ABC時(shí),點(diǎn)A的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,取哪些值時(shí):
(1)的值是正數(shù).
(2)的值是負(fù)數(shù).
(3)的值是零.
(4)分式無意義.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O是以AB為直徑的△ABC的外接圓,過點(diǎn)A作⊙O的切線交OC的延長線于點(diǎn)D,交BC的延長線于點(diǎn)E.
(1)求證:∠DAC=∠DCE;
(2)若AB=2,sin∠D=,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn)A(2,0),點(diǎn)B(0,2),點(diǎn)O(0,0).△AOB繞著O順時(shí)針旋轉(zhuǎn),得△A′OB′,點(diǎn)A、B旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)為A′、B′,記旋轉(zhuǎn)角為α.
(I)如圖1,若α=30°,求點(diǎn)B′的坐標(biāo);
(Ⅱ)如圖2,若0°<α<90°,設(shè)直線AA′和直線BB′交于點(diǎn)P,求證:AA′⊥BB′;
(Ⅲ)若0°<α<360°,求(Ⅱ)中的點(diǎn)P縱坐標(biāo)的最小值(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中華文明,源遠(yuǎn)流長;中華漢字,寓意深廣.為傳承中華優(yōu)秀傳統(tǒng)文化,某校團(tuán)委組織了一次全校3000名學(xué)生參加的“漢字聽寫”大賽.為了解本次大賽的成績,校團(tuán)委隨機(jī)抽取了其中200名學(xué)生的成績作為樣本進(jìn)行統(tǒng)計(jì),制成如下不完整的統(tǒng)計(jì)圖表:
頻數(shù)頻率分布表
成績x(分) | 頻數(shù)(人) | 頻率 |
50≤x<60 | 10 | 0.05 |
60≤x<70 | 30 | 0.15 |
70≤x<80 | 40 | n |
80≤x<90 | m | 0.35 |
90≤x≤100 | 50 | 0.25 |
根據(jù)所給信息,解答下列問題:
(1)m= ,n= ;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)這200名學(xué)生成績的中位數(shù)會(huì)落在 分?jǐn)?shù)段;
(4)若成績在90分以上(包括90分)為“優(yōu)”等,請(qǐng)你估計(jì)該校參加本次比賽的3000名學(xué)生中成績是“優(yōu)”等的約有多少人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com