【題目】在平面直角坐標(biāo)系中,已知點(diǎn)A(2,0),點(diǎn)B(0,2),點(diǎn)O(0,0).△AOB繞著O順時(shí)針旋轉(zhuǎn),得△A′OB′,點(diǎn)A、B旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)為A′、B′,記旋轉(zhuǎn)角為α.
(I)如圖1,若α=30°,求點(diǎn)B′的坐標(biāo);
(Ⅱ)如圖2,若0°<α<90°,設(shè)直線AA′和直線BB′交于點(diǎn)P,求證:AA′⊥BB′;
(Ⅲ)若0°<α<360°,求(Ⅱ)中的點(diǎn)P縱坐標(biāo)的最小值(直接寫出結(jié)果即可).
【答案】(1)B'的坐標(biāo)為(,3);(2)見(jiàn)解析 ;(3)﹣2.
【解析】
(1)設(shè)A'B'與x軸交于點(diǎn)H,由OA=2,OB=2,∠AOB=90°推出∠ABO=∠B'=30°,
由∠BOB'=α=30°推出BO∥A'B',由OB'=OB=2推出OH=OB'=,B'H=3即可得出;
(2)證明∠BPA'=90即可;
(3)作AB的中點(diǎn)M(1,),連接MP,由∠APB=90°,推出點(diǎn)P的軌跡為以點(diǎn)M為圓心,以MP=AB=2為半徑的圓,除去點(diǎn)(2,),所以當(dāng)PM⊥x軸時(shí),點(diǎn)P縱坐標(biāo)的最小值為﹣2.
(Ⅰ)如圖1,設(shè)A'B'與x軸交于點(diǎn)H,
∵OA=2,OB=2,∠AOB=90°,
∴∠ABO=∠B'=30°,
∵∠BOB'=α=30°,
∴BO∥A'B',
∵OB'=OB=2,
∴OH=OB'=,B'H=3,
∴點(diǎn)B'的坐標(biāo)為(,3);
(Ⅱ)證明:∵∠BOB'=∠AOA'=α,OB=OB',OA=OA',
∴∠OBB'=∠OA'A=(180°﹣α),
∵∠BOA'=90°+α,四邊形OBPA'的內(nèi)角和為360°,
∴∠BPA'=360°﹣(180°﹣α)﹣(90°+α)=90°,
即AA'⊥BB';
(Ⅲ)點(diǎn)P縱坐標(biāo)的最小值為.
如圖,作AB的中點(diǎn)M(1,),連接MP,
∵∠APB=90°,
∴點(diǎn)P的軌跡為以點(diǎn)M為圓心,以MP=AB=2為半徑的圓,除去點(diǎn)(2,).
∴當(dāng)PM⊥x軸時(shí),點(diǎn)P縱坐標(biāo)的最小值為﹣2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】吃香腸是廬江縣春節(jié)的傳統(tǒng)習(xí)俗,小嚴(yán)的父親去年春節(jié)前用了元購(gòu)買豬肉裝香腸;今年下半年受非洲豬瘟影響,豬肉出現(xiàn)大幅度漲價(jià),價(jià)格比去年上漲了元,
(1)如果去年豬肉價(jià)格為元,求今年元比去年少買多少豬肉?(結(jié)果用的式子表示)
(2)近期縣政府為保障豬肉市場(chǎng)供應(yīng),為百姓生活著想,采取一系列惠民政策,豬肉價(jià)格下降了元,這樣小嚴(yán)的父親花了買到和去年一樣多的豬肉.求小嚴(yán)父親今年購(gòu)買豬肉每千克多少元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在中,,垂足為,平分,點(diǎn)為的中點(diǎn),點(diǎn)為上的一點(diǎn),連接、、、,.
(1)若,,求和的長(zhǎng).
(2)求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明家1至6月份的用水量統(tǒng)計(jì)如圖所示,關(guān)于這組數(shù)據(jù),下列說(shuō)法錯(cuò)誤的是( ).
A、眾數(shù)是6噸 B、平均數(shù)是5噸 C、中位數(shù)是5噸 D、方差是
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是圓O的直徑,AC是圓O的弦,過(guò)點(diǎn)C的切線交AB的延長(zhǎng)線于點(diǎn)D,若∠A=∠D,CD=2.
(1)求∠A的度數(shù).
(2)求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店銷售A型和B型兩種電腦,其中A型電腦每臺(tái)的利潤(rùn)為400元,B型電腦每臺(tái)的利潤(rùn)為500元.該商店計(jì)劃再一次性購(gòu)進(jìn)兩種型號(hào)的電腦共100臺(tái),其中B型電腦的進(jìn)貨量不超過(guò)A型電腦的2倍,設(shè)購(gòu)進(jìn)A型電腦x臺(tái),這100臺(tái)電腦的銷售總利潤(rùn)為y元.
(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)該商店購(gòu)進(jìn)A型、B型電腦各多少臺(tái),才能使銷售總利潤(rùn)最大,最大利潤(rùn)是多少?
(3)實(shí)際進(jìn)貨時(shí),廠家對(duì)A型電腦出廠價(jià)下調(diào)a(0<a<200)元,且限定商店最多購(gòu)進(jìn)A型電腦60臺(tái),若商店保持同種電腦的售價(jià)不變,請(qǐng)你根據(jù)以上信息,設(shè)計(jì)出使這100臺(tái)電腦銷售總利潤(rùn)最大的進(jìn)貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校冬季趣味運(yùn)動(dòng)會(huì)開設(shè)了“搶收搶種”項(xiàng)目,八(5)班甲、乙兩個(gè)小組都想代表班級(jí)參賽,為了選擇一個(gè)比較好的隊(duì)伍,八(5)班的班委組織了一次選拔賽,甲、乙兩組各10人的比賽成績(jī)?nèi)缦卤恚?/span>
甲組 | 7 | 8 | 9 | 7 | 10 | 10 | 9 | 10 | 10 | 10 |
乙組 | 10 | 8 | 7 | 9 | 8 | 10 | 10 | 9 | 10 | 9 |
(1)甲組成績(jī)的中位數(shù)是 分,乙組成績(jī)的眾數(shù)是 分.
(2)計(jì)算乙組的平均成績(jī)和方差.
(3)已知甲組成績(jī)的方差是1.4,則選擇 組代表八(5)班參加學(xué)校比賽.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料,并解答問(wèn)題.
材料:將分式拆分成一個(gè)整式與一個(gè)分式(分子為整數(shù))的和的形式.
解:由分母為﹣x2+1,可設(shè)﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b則﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣ax2+x2+a+b=﹣x4﹣(a﹣1)x2+(a+b)
∵對(duì)應(yīng)任意x,上述等式均成立,∴,∴a=2,b=1
∴==+=x2+2+這樣,分式被拆分成了一個(gè)整式x2+2與一個(gè)分式的和.
解答:
(1)將分式 拆分成一個(gè)整式與一個(gè)分式(分子為整數(shù))的和的形式.
(2)試說(shuō)明的最小值為8.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小強(qiáng)在做課后習(xí)題時(shí),遇到這樣一道題:“如圖所示,、兩村莊在一條河的兩岸,從村莊去村莊,需要在河上造一座橋,請(qǐng)問(wèn)橋造在何處從村莊去村莊的路徑最短?(假定河的兩岸是平行的直線,橋與河垂直)”
小強(qiáng)的解題思路,因?yàn)闃蚺c河岸垂直,線段是一個(gè)不變的量,將它平移到處得線段,總的路程與是相等的,故要使最短,就是求點(diǎn)到點(diǎn)最短即可,所以點(diǎn)應(yīng)是與的交點(diǎn).根據(jù)上述材料解答下列問(wèn)題:如圖所示:、兩個(gè)駐軍地被兩條河隔開,上級(jí)安排緊急任務(wù),現(xiàn)要求一名士兵從地出發(fā)到地完成這項(xiàng)任務(wù),現(xiàn)要修兩座與河岸垂直的橋,問(wèn)橋建在何處使得這名士兵走的路徑最短?(假定河的兩岸是平行的直線,河與的寬為,河與的寬為).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com