如圖,△ABC為等邊三角形,D是△ABC內(nèi)一點,且AD=3,將△ABD繞點A旋轉(zhuǎn)到△ACE的位置,連接DE,則DE的長為   .

 

【答案】

3

【解析】

試題分析:將△ABD繞點A旋轉(zhuǎn)到△ACE的位置,根據(jù)旋轉(zhuǎn)特征,是其的旋轉(zhuǎn)角,AD=AE;因為△ABC為等邊三角形,所以,所以,因此是等邊三角形,DE=AD=3

考點:旋轉(zhuǎn),等邊三角形

點評:本題考查旋轉(zhuǎn),等邊三角形,要求考生掌握旋轉(zhuǎn)的特征,會判定一個三角形是等邊三角形,熟悉等邊三角形的性質(zhì)

 

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

16、如圖,△ABC為等邊三角形,P為三角形內(nèi)一點,將△ABP繞A點逆時針旋轉(zhuǎn)60°后與△ACP′重合,若AP=3,則PP′=
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,△ABC為等邊三角形,D、F分別為BC、AB上的點,且CD=BF,以AD為邊作等邊△ADE.
(1)求證:△ACD≌△CBF;
(2)點D在線段BC上何處時,四邊形CDEF是平行四邊形且∠DEF=30°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC為等邊三角形,AE=CD,AD、BE相交于點P,BQ⊥AD與Q,PQ=4,PE=1
(1)求證∠BPQ=60°
(2)求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC為等邊三角形,D、F分別為CB、BA上的點,且CD=BF,以AD為一邊作等邊三角形ADE.
①△ACD與△CBF是全等三角形嗎?說說你的理由.
②ED=FC嗎?說說你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC為等邊△,EC=ED,∠CED=120゜,P為BD的中點,求證:AE=2PE.

查看答案和解析>>

同步練習冊答案