【題目】如圖,在△ABC中,已知∠A=80°,∠B=60°,DE∥BC,那么∠CED的大小是( 。
A.40°
B.60°
C.120°
D.140°

【答案】D
【解析】解:∵∠A+∠B+∠C=180°, ∴∠C=180°﹣∠A﹣∠B=180°﹣80°﹣60°=40°,
又∵DE∥BC,
∴∠CED+∠C=180°,
∴∠CED=180°﹣40°=140°.
故選D.
【考點精析】本題主要考查了平行線的性質(zhì)和三角形的內(nèi)角和外角的相關(guān)知識點,需要掌握兩直線平行,同位角相等;兩直線平行,內(nèi)錯角相等;兩直線平行,同旁內(nèi)角互補;三角形的三個內(nèi)角中,只可能有一個內(nèi)角是直角或鈍角;直角三角形的兩個銳角互余;三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和;三角形的一個外角大于任何一個和它不相鄰的內(nèi)角才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某中學七年級一班在一次活動中要分為四個組,其中第一組有x人,第二組比第一組的5人,第三組比一、二組的和少15人,第四組與第一組2倍的和是34.

(1)用含x的代數(shù)式表示第二、三、四組的人數(shù),把答案填在下表相應的位置:

第一組

第二組

第三組

第四組

x

   

   

   

x=12

   

   

   

(2)求x=12時第二、三、四組的人數(shù),把答案填在上表相應的位置;

(3)求七年級一班的總?cè)藬?shù)(用含x的代數(shù)式表示),并求x=10時,該班的總?cè)藬?shù);

(4)x能否等于13,為什么?x能否等于6,為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖甲,在平面直角坐標系中,A、B的坐標分別為(4,0)、(0,3),拋物線y= x2+bx+c經(jīng)過點B,且對稱軸是直線x=﹣

(1)求拋物線對應的函數(shù)解析式;
(2)將圖甲中△ABO沿x軸向左平移到△DCE(如圖乙),當四邊形ABCD是菱形時,請說明點C和點D都在該拋物線上;
(3)在(2)中,若點M是拋物線上的一個動點(點M不與點C、D重合),經(jīng)過點M作MN∥y軸交直線CD于N,設(shè)點M的橫坐標為t,MN的長度為l,求l與t之間的函數(shù)解析式,并求當t為何值時,以M、N、C、E為頂點的四邊形是平行四邊形.(參考公式:拋物線y=ax2+bx+c(a≠0)的頂點坐標為(﹣ , ),對稱軸是直線x=﹣ .)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:拋物線y= (x﹣1)2﹣3.
(1)寫出拋物線的開口方向、對稱軸;
(2)函數(shù)y有最大值還是最小值?并求出這個最大(。┲;
(3)設(shè)拋物線與y軸的交點為P,與x軸的交點為Q,求直線PQ的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校在商場購買甲、乙兩種不同足球,購買甲種足球共花費2000元,購買乙種足球共花費1400元,購買甲種足球數(shù)量是購買乙種足球數(shù)量的2倍,且購買一個乙種足球比購買一個甲種足球多花20元.

(1)求購買一個甲種足球、一個乙種足球各需多少元?

(2)為響應足球進校園的號召,這所學校決定再次購買甲、乙兩種足球共50個.恰逢該商場對兩種足球的售價進行調(diào)整,甲種足球售價比第一次購買時提高了10%,乙種足球售價比第一次購買時降低了10%,如果此次購買甲、乙兩種足球的總費用不超過2900元,那么這所學校最多可購買多少個乙種足球?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“十一”黃金周期間,深圳世界之窗風景區(qū)在7天假期中每天旅游的人數(shù)變化如下表(正數(shù)表示比前一天多的人數(shù),負數(shù)表示比前一天少的人數(shù)):

日期

1日

2日

3日

4日

5日

6日

7日

人數(shù)變化

單位:萬人

+1.6

+0.8

+0.4

﹣0.4

﹣0.8

+0.2

﹣1.2

(1)請判斷七天內(nèi)游客人數(shù)最多的是   日,最少的是   日.

(2)以9月30日的游客人數(shù)為0點,用折線統(tǒng)計圖表示這7天的游客人數(shù)的變化情況.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AOB是一鋼架,AOB=15°,為使鋼架更加牢固,需在其內(nèi)部添加一些鋼管EFFG、GH…添的鋼管長度都與OE相等,則最多能添加這樣的鋼管( )根.

A. 2 B. 4 C. 5 D. 無數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】
(1)計算:|﹣2012|+(3.14﹣π)0+sin30°﹣21
(2)先化簡,再求值: ,其中

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC的角平分線AD,中線BE相交于點O,有下列結(jié)論:①AO是△ABE的角平分線;②BO是△ABD的中線;③DE是△ADC的中線;④ED是△EBC的角平分線.其中正確結(jié)論的序號是 ________

查看答案和解析>>

同步練習冊答案