【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+2過(guò)B(﹣2,6),C(2,2)兩點(diǎn).
(1)試求拋物線的解析式;
(2)記拋物線頂點(diǎn)為D,求△BCD的面積;
(3)若直線y=﹣ x向上平移b個(gè)單位所得的直線與拋物線段BDC(包括端點(diǎn)B、C)部分有兩個(gè)交點(diǎn),求b的取值范圍.

【答案】
(1)解:由題意 解得 ,

∴拋物線解析式為y= x2﹣x+2


(2)解:∵y= x2﹣x+2= (x﹣1)2+

∴頂點(diǎn)坐標(biāo)(1, ),

∵直線BC為y=﹣x+4,∴對(duì)稱軸與BC的交點(diǎn)H(1,3),

∴SBDC=SBDH+SDHC= 3+ 1=3


(3)解:由 消去y得到x2﹣x+4﹣2b=0,

當(dāng)△=0時(shí),直線與拋物線相切,1﹣4(4﹣2b)=0,

∴b= ,

當(dāng)直線y=﹣ x+b經(jīng)過(guò)點(diǎn)C時(shí),b=3,

當(dāng)直線y=﹣ x+b經(jīng)過(guò)點(diǎn)B時(shí),b=5,

∵直線y=﹣ x向上平移b個(gè)單位所得的直線與拋物線段BDC(包括端點(diǎn)B、C)部分有兩個(gè)交點(diǎn),

<b≤3.


【解析】(1)根據(jù)待定系數(shù)法即可解決問(wèn)題.(2)求出直線BC與對(duì)稱軸的交點(diǎn)H,根據(jù)SBDC=SBDH+SDHC即可解決問(wèn)題.(3)由 ,當(dāng)方程組只有一組解時(shí)求出b的值,當(dāng)直線y=﹣ x+b經(jīng)過(guò)點(diǎn)C時(shí),求出b的值,當(dāng)直線y=﹣ x+b經(jīng)過(guò)點(diǎn)B時(shí),求出b的值,由此即可解決問(wèn)題.
【考點(diǎn)精析】掌握二次函數(shù)的性質(zhì)是解答本題的根本,需要知道增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減;對(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次軍事演習(xí)中,藍(lán)方在﹣條東西走向的公路上的A處朝正南方向撤退,紅方在公路上的B處沿南偏西60°方向前進(jìn)實(shí)施攔截.紅方行駛2000米到達(dá)C后,因前方無(wú)法通行,紅方?jīng)Q定調(diào)整方向,再朝南偏西45°方向前進(jìn)了相同距離,剛好在D處成功攔截藍(lán)方.

(1)求點(diǎn)C到公路的距離;
(2)求紅藍(lán)雙方最初的距離.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,∠CAB的平分線交BC于D,DE是AB的垂直平分線,垂足為E,若BC=3,則DE的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD中,AB=12,點(diǎn)E在邊CD上,且BG=CG,將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②∠EAG=450;③CE=2DE;④AG∥CF;⑤S△FGC=.其中正確結(jié)論的個(gè)數(shù)是( )

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Rt△AOB在平面直角坐標(biāo)系中,點(diǎn)O與坐標(biāo)原點(diǎn)重合,點(diǎn)Ax軸上,點(diǎn)By軸上,△AOB沿直線BE折疊,使得OB邊落在AB,點(diǎn)O與點(diǎn)D重合.

(1)求直線BE的解析式;

(2)求點(diǎn)D的坐標(biāo);

(3)x軸上是否存在點(diǎn)P,使△PAD為等腰三角形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,ABC=70°,以B為圓心,任意長(zhǎng)為半徑畫(huà)弧交AB,BC于點(diǎn)E,F(xiàn),再分別以點(diǎn)E,F(xiàn)為圓心、以大于EF長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)P,作射線BPAC于點(diǎn)D,則∠BDC為(  )度.

A. 65 B. 75 C. 80 D. 85

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y=ax2+bx+c(a≠0)圖象的一部分如圖所示,其對(duì)稱軸為x=2,與x軸的一個(gè)交點(diǎn)是(﹣1,0),有以下結(jié)論:①abc>0;②4a﹣2b+c<0;③4a+b=0④拋物線與x軸的另一個(gè)交點(diǎn)是(5,0)⑤若點(diǎn)(﹣3,y1)(﹣6,y2)都在拋物線上,則y1<y2 . 其中正確的是 . (只填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Rt△ACB中,∠ACB=90°,∠ABC的平分線BE∠BAC的外角平分線AD相交于點(diǎn)P,分別交ACBC的延長(zhǎng)線于E,D.過(guò)PPF⊥ADAC的延長(zhǎng)線于點(diǎn)H,交BC的延長(zhǎng)線于點(diǎn)F,連接AFDH于點(diǎn)G.則下列結(jié)論:①∠APB=45°;②PF=PA;③BD﹣AH=AB;④DG=AP+GH.其中正確的是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)過(guò)某十字路口的汽車,它可能繼續(xù)直行,也可能向左轉(zhuǎn)或向右轉(zhuǎn),這三種可能性大小相同,現(xiàn)在兩輛汽車經(jīng)過(guò)這個(gè)十字路口.
(1)請(qǐng)用“樹(shù)形圖”或“列表法”列舉出這兩輛汽車行駛方向所有可能的結(jié)果;
(2)求這兩輛汽車都向左轉(zhuǎn)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案