【題目】某班同學(xué)組織春游活動(dòng),到超市選購(gòu)A, B兩種飲料,若購(gòu)買(mǎi)6A種飲料, 4B種飲料需花費(fèi)39元,購(gòu)買(mǎi)20A種飲料和30B種飲料需花費(fèi)180元。

(1)購(gòu)買(mǎi)A, B兩種飲料每瓶各多少元?

(2)實(shí)際購(gòu)買(mǎi)時(shí),恰好超市進(jìn)行促銷(xiāo)活動(dòng),如果一次性購(gòu)買(mǎi) A種飲料數(shù)量超過(guò)20瓶,則超出部分的價(jià)格享受八折優(yōu)惠,B種飲料價(jià)格保持不變,若購(gòu)買(mǎi)B種飲料的數(shù)量是A種飲料數(shù)量的2倍還多10瓶,且總費(fèi)用不超過(guò)320元?jiǎng)t最多可購(gòu)買(mǎi)A種飲料多少瓶?

【答案】(1)A、B兩種飲料每瓶各為4.5元、3元;(2)最多購(gòu)買(mǎi)A種飲料28

【解析】

1)分別利用購(gòu)買(mǎi)6A種飲料和4B種飲料需花費(fèi)39元,購(gòu)買(mǎi)20A種飲料和30B種飲料需花費(fèi)180元分別得出等式求出即可;

2)分別表示出購(gòu)買(mǎi)兩種飲料的費(fèi)用,進(jìn)而得出不等式求出答案.

解:(1)設(shè)A、B兩種飲料每瓶各為xy

,解得x=4.5y=3.

答:購(gòu)進(jìn)A種飲料每瓶4.5元,購(gòu)進(jìn)B種飲料每瓶3元;

(2)設(shè)購(gòu)進(jìn)A種飲料a,購(gòu)進(jìn)B種飲料(2a+10)瓶,根據(jù)題意可得;

20×4.5+4.5(a20)×80%+3(2a+10)320,

解得:a28 ,

a取正整數(shù),

a最大為28,

答:最多可購(gòu)進(jìn)A種飲料28

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程x2-(k+2)x+2k=0.

(1)求證:k取任何實(shí)數(shù)值,方程總有實(shí)數(shù)根;

(2)若此方程的一個(gè)根是1,請(qǐng)求出方程的另一個(gè)根,并求以此兩根為邊長(zhǎng)的直角三角形的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AOB=90°COB的延長(zhǎng)線(xiàn)上,DO上一點(diǎn)BAD=∠BDC

1求證CDO的切線(xiàn);

2O的半徑為1OB=BC,求四邊形AOBD的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的口袋中裝有3個(gè)帶號(hào)碼的球,球號(hào)分別為2,3,4,這些球除號(hào)碼不同外其它均相同。甲、乙、兩同學(xué)玩摸球游戲,游戲規(guī)則如下:

先由甲同學(xué)從中隨機(jī)摸出一球,記下球號(hào),并放回?cái)噭颍儆梢彝瑢W(xué)從中隨機(jī)摸出一球,記下球號(hào)。將甲同學(xué)摸出的球號(hào)作為一個(gè)兩位數(shù)的十位上的數(shù),乙同學(xué)的作為個(gè)位上的數(shù)。若該兩位數(shù)能被4整除,則甲勝,否則乙勝.

問(wèn):這個(gè)游戲公平嗎?請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,為等邊三角形,,、相交于點(diǎn),于點(diǎn),,

(1)求證:

(2)求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,圓心都在x軸正半軸上的半圓O1,半圓O2,…,半圓On與直線(xiàn)l相切.設(shè)半圓O1,半圓O2,…,半圓On的半徑分別是r1,r2,…,rn,則當(dāng)直線(xiàn)l與x軸所成銳角為30°,且r1=1時(shí),r2018_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABCD,點(diǎn)E為平面內(nèi)一點(diǎn),BECEE

1)如圖1,請(qǐng)直接寫(xiě)出∠ABE和∠DCE之間的數(shù)量關(guān)系;

2)如圖2,過(guò)點(diǎn)EEFCD,垂足為F,求證:∠CEF=ABE

3)如圖3,在(2)的條件下,作EG平分∠CEF,交DF于點(diǎn)G,作ED平分∠BEF,交CDD,連接BD,若∠DBE+ABD=180°,且∠BDE=3GEF,求∠BEG的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,已知Aab),且a.b滿(mǎn)足

1)求A點(diǎn)的坐標(biāo)及線(xiàn)段OA的長(zhǎng)度;(2)點(diǎn)Px軸正半軸上一點(diǎn),且△AOP是等腰三角形,求P點(diǎn)的坐標(biāo);

3)如圖2,若B(1,0),C0,-3),試確定∠ACO+BCO的值是否發(fā)生變化,若不變,求其值;若變化,請(qǐng)求出變化范圍。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在中,AB=AC,∠ABC =,DBC邊上一點(diǎn),以AD為邊作,使AE=AD,+=180°

1)直接寫(xiě)出∠ADE的度數(shù)(用含的式子表示);

2)以AB,AE為邊作平行四邊形ABFE,

如圖2,若點(diǎn)F恰好落在DE上,求證:BD=CD

如圖3,若點(diǎn)F恰好落在BC上,求證:BD=CF

查看答案和解析>>

同步練習(xí)冊(cè)答案