【題目】在平面直角坐標(biāo)系中,拋物線與軸交于點(diǎn),,與軸交于點(diǎn),直線經(jīng)過(guò),兩點(diǎn).
求拋物線的解析式;
在上方的拋物線上有一動(dòng)點(diǎn).
①如圖,當(dāng)點(diǎn)運(yùn)動(dòng)到某位置時(shí),以,為鄰邊的平行四邊形第四個(gè)頂點(diǎn)恰好也在拋物線上,求出此時(shí)點(diǎn)的坐標(biāo);
②如圖,過(guò)點(diǎn),的直線交于點(diǎn),若,求的值.
【答案】.①點(diǎn)的坐標(biāo)是;②.
【解析】
(1)由直線的解析式y=x+4易求點(diǎn)A和點(diǎn)C的坐標(biāo),把A和C的坐標(biāo)分別代入y=-x2+bx+c求出b和c的值即可得到拋物線的解析式;
(2)①若以AP,AO為鄰邊的平行四邊形的第四個(gè)頂點(diǎn)Q恰好也在拋物線上,則PQ∥AO,再根據(jù)拋物線的對(duì)稱軸可求出點(diǎn)P的橫坐標(biāo),由(1)中的拋物線解析式,進(jìn)而可求出其縱坐標(biāo),問(wèn)題得解;
②過(guò)P點(diǎn)作PF∥OC交AC于點(diǎn)F,因?yàn)?/span>PF∥OC,所以△PEF∽△OEC,由相似三角形的性質(zhì):對(duì)應(yīng)邊的比值相等可求出PF的長(zhǎng),進(jìn)而可設(shè)點(diǎn)點(diǎn)F(x,x+4),利用(-x2-x+4)-(x+4)=,可求出x的值,解方程求出x的值可得點(diǎn)P的坐標(biāo),代入直線y=kx即可求出k的值.
∵直線經(jīng)過(guò),兩點(diǎn),
∴點(diǎn)坐標(biāo)是,點(diǎn)坐標(biāo)是,
又∵拋物線過(guò),兩點(diǎn),
∴,解得:,
∴拋物線的解析式為.①如圖
∵,
∴拋物線的對(duì)稱軸是直線.
∵以,為鄰邊的平行四邊形的第四個(gè)頂點(diǎn)恰好也在拋物線上,
∴,.
∵,都在拋物線上,
∴,關(guān)于直線對(duì)稱,
∴點(diǎn)的橫坐標(biāo)是,
∴當(dāng)時(shí),,
∴點(diǎn)的坐標(biāo)是;
②過(guò)點(diǎn)作交于點(diǎn),
∵,
∴,
∴.
又∵,
∴,
設(shè)點(diǎn),
∴,
化簡(jiǎn)得:,解得:,.
當(dāng)時(shí),;當(dāng)時(shí),,
即點(diǎn)坐標(biāo)是或.
又∵點(diǎn)在直線上,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形網(wǎng)格中的每個(gè)小正方形邊長(zhǎng)都是1,每個(gè)小格的頂點(diǎn)叫做格點(diǎn),以格點(diǎn)為頂點(diǎn)分別按下列要求畫(huà)三角形(用陰影表示).
(1)在圖(a)中,畫(huà)一個(gè)不含直角的三角形,使它的三邊長(zhǎng)都是有理數(shù);
(2)在圖(b)中,畫(huà)一個(gè)直角三角形,使它的斜邊長(zhǎng)為;
(3)在圖(c)中,畫(huà)一個(gè)直角三角形,使它的斜邊長(zhǎng)為5,直角邊長(zhǎng)都是無(wú)理數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】等腰的三邊分別為、、,其中,若關(guān)于的方程有兩個(gè)相等的實(shí)數(shù)根,則的周長(zhǎng)是( )
A. 9 B. 12 C. 9或12 D. 不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形ABCD的頂點(diǎn)坐標(biāo)分別為A(﹣2,1),B(﹣4,1),C(﹣3,2),D(﹣1,2).
(1)在圖中畫(huà)出四邊形ABCD,并求出四邊形ABCD的面積;
(2)在圖中畫(huà)出四邊形ABCD關(guān)于x軸的對(duì)稱圖形A1B1C1D1,并分別寫(xiě)出點(diǎn)A、C的對(duì)應(yīng)點(diǎn)A1、C1的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到.
如圖,________°;
連接交直線于點(diǎn),直線交于點(diǎn).
①如圖所示,試說(shuō)明;
②設(shè),旋轉(zhuǎn)的角度,當(dāng)、滿足什么關(guān)系時(shí),是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將等腰直角三角形ABC(AB=AC,∠BAC=90°)和等腰直角三角形DEF(DE=DF,∠EDF=90°)按圖1擺放,點(diǎn)D在BC邊的中點(diǎn)上,點(diǎn)A在DE上.
(1)填空:AB與EF的位置關(guān)系是 ;
(2)△DEF繞點(diǎn)D按順時(shí)針?lè)较蜣D(zhuǎn)動(dòng)至圖2所示位置時(shí),DF,DE分別交AB,AC于點(diǎn)P,Q,求證:∠BPD+∠DQC=180°;
(3)如圖2,在△DEF繞點(diǎn)D按順時(shí)針?lè)较蜣D(zhuǎn)動(dòng)過(guò)程中,始終點(diǎn)P不到達(dá)A點(diǎn),△ABC的面積記為S1,四邊形APDQ的面積記為S2,那么S1與S2之間是否存在不變的數(shù)量關(guān)系?若存在,請(qǐng)寫(xiě)出它們之間的數(shù)量關(guān)系并證明;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB<BC,E為CD邊的中點(diǎn),將△ADE繞點(diǎn)E順時(shí)針旋轉(zhuǎn)180°,點(diǎn)D的對(duì)應(yīng)點(diǎn)為C,點(diǎn)A的對(duì)應(yīng)點(diǎn)為F,過(guò)點(diǎn)E作ME⊥AF交BC于點(diǎn)M,連接AM、BD交于點(diǎn)N,現(xiàn)有下列結(jié)論:
①AM=AD+MC;②AM=DE+BM;③DE2=ADCM;④點(diǎn)N為△ABM的外心.其中正確的個(gè)數(shù)為( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC為等邊三角形,D、E分別是AC、BC上的點(diǎn),且AD=CE,AE與BD相交于點(diǎn)P,BF⊥AE于點(diǎn)F.若PF=4,PD=1,則AE的長(zhǎng)為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com