【題目】某蓄水池的橫斷面示意圖如圖所示,分深水區(qū)和淺水區(qū),如果這個注滿水的蓄水池以固定的流量把水全部放出,下面的圖象能大致表示水的深度h和放水時間t之間的關(guān)系的是( 。

A.
B.
C.
D.

【答案】A
【解析】由圖知蓄水池上寬下窄,深度h和放水時間t的比不一樣,前者慢后者快,即前者的斜率小,后者斜率大,分析各選項(xiàng)知只有A正確.B斜率一樣,C前者斜率大,后者小,D也是前者斜率大,后者小,因此B、C、D排除.故選A
【考點(diǎn)精析】本題主要考查了一次函數(shù)的性質(zhì)和一次函數(shù)的圖象和性質(zhì)的相關(guān)知識點(diǎn),需要掌握一般地,一次函數(shù)y=kx+b有下列性質(zhì):(1)當(dāng)k>0時,y隨x的增大而增大(2)當(dāng)k<0時,y隨x的增大而減。灰淮魏瘮(shù)是直線,圖像經(jīng)過仨象限;正比例函數(shù)更簡單,經(jīng)過原點(diǎn)一直線;兩個系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負(fù)來左下展,變化規(guī)律正相反;k的絕對值越大,線離橫軸就越遠(yuǎn)才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O的直徑AB=12cm,CAB延長線上一點(diǎn),CPO相切于點(diǎn)P,過點(diǎn)B作弦BDCP,連接PD

1)求證:點(diǎn)P的中點(diǎn);

2)若C=∠D,求四邊形BCPD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】9m8,3n2,則32mn的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,BD是矩形ABCD的對角線,∠ABD=30°,AD=1.將△BCD沿射線BD方向平移到△B'C'D'的位置,使B'為BD中點(diǎn),連接AB',C'D,AD',BC',如圖②.

(1)求證:四邊形AB'C'D是菱形;

(2)四邊形ABC'D′的周長為   

(3)將四邊形ABC'D'沿它的兩條對角線剪開,用得到的四個三角形拼成與其面積相等的矩形,直接寫出所有可能拼成的矩形周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的對角線AC,BD相交于點(diǎn)O,△COD關(guān)于CD的對稱圖形為△CED.

(1)求證:四邊形OCED是菱形;
(2)連接AE,若AB=6cm,BC= cm.
①求sin∠EAD的值;
②若點(diǎn)P為線段AE上一動點(diǎn)(不與點(diǎn)A重合),連接OP,一動點(diǎn)Q從點(diǎn)O出發(fā),以1cm/s的速度沿線段OP勻速運(yùn)動到點(diǎn)P,再以1.5cm/s的速度沿線段PA勻速運(yùn)動到點(diǎn)A,到達(dá)點(diǎn)A后停止運(yùn)動,當(dāng)點(diǎn)Q沿上述路線運(yùn)動到點(diǎn)A所需要的時間最短時,求AP的長和點(diǎn)Q走完全程所需的時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O的直徑,點(diǎn)C⊙O上一點(diǎn),∠BAC的平分線AD⊙O于點(diǎn)D,過點(diǎn)D垂直于AC的直線交AC的延長線于點(diǎn)E

1)求證:DE⊙O的切線;

2)如圖AD=5AE=4,求⊙O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2006年的夏天,某地旱情嚴(yán)重.該地10號,15號的人日均用水量的變化情況如圖所示.若該地10號,15號的人均用水量分別為18千克和15千克,并一直按此趨勢直線下降.當(dāng)人日均用水量低于10千克時,政府將向當(dāng)?shù)鼐用袼退敲凑畱?yīng)開始送水的號數(shù)為( 。
A.23
B.24
C.25
D.26

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a+b=4,a﹣b=3,則a2﹣b2=( 。
A.4
B.3
C.12
D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題探究:

如圖1,△ACB和△DCE均為等邊三角形,點(diǎn)A、D、E在同一直線上,連接BE.

(1)證明:AD=BE;

(2)求∠AEB的度數(shù).

問題變式:

如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點(diǎn)A、D、E在同一直線上,CM為△DCE中DE邊上的高,連接BE.請求出∠AEB的度數(shù)以及判斷線段CM、AE、BE之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案