【題目】已知:如圖,拋物線與軸交于點.
(1)試確定該拋物線的函數(shù)表達式;
(2)已知點是該拋物線的頂點,求的面積;
(3)若點是線段上的一動點,求的最小值.
【答案】(1);(2);(3)OP的最小值是.
【解析】
(1)將點A與點B坐標代入拋物線解析式得到關于的方程組,由此求出的值,從而進一步得出解析式即可;
(2)利用配方法求出拋物線的頂點坐標,然后根據(jù)三角形的面積公式進一步計算即可;
(2)根據(jù)垂線段最短可知當OP⊥BC時,OP最小,據(jù)此進一步利用三角形的面積公式求出OP即可.
(1)∵拋物線與軸交于點A(,0)與點B(3,0),
∴
解得:
∴拋物線的解析式為;
(2)∵,
∴拋物線的頂點的坐標為(1,2).
∴;
(3)當是邊上的高時,的值最小,
∵B點坐標為(3,0),C點坐標為(1,2),
∴
∵,
∴,
即OP的最小值是.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形 ABCD 為矩形,點 E 為 BC 上的一點,滿足 AB CF BE CE ,連接 DE ,延長 EF交 AD 于 M 點,若 AE FD AF , DEF 15°,則M 的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,扇形ABC的圓心角為90°,半徑為6,將扇形ABC繞A點逆時針旋轉得到扇形ADE,點B、C的對應點分別為點D、E,若點D剛好落在上,則陰影部分的面積為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,函數(shù)()的圖象經過點(4,1),直線與圖象交于點,與軸交于點.
(1)求的值;
(2)橫、縱坐標都是整數(shù)的點叫做整點.記圖象在點,之間的部分與線段,,圍成的區(qū)域(不含邊界)為.
①當時,直接寫出區(qū)域內的整點個數(shù);
②若區(qū)域內恰有4個整點,結合函數(shù)圖象,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,直線與雙曲線相交于點.
求雙曲線的表達式;
過動點且垂直于x軸的直線與直線及雙曲線的交點分別為B和C,當點B位于點C下方時,求出n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知正方形ABCD的對角線AC與BD交于點O,點E、F分別是線段OB、OC上的動點
(1)如果動點E、F滿足BE=OF(如圖),且AE⊥BF時,問點E在什么位置?并證明你的結論;
(2)如果動點E、F滿足BE=CF(如圖),寫出所有以點E或F為頂點的全等三角形(不得添加輔助線).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 如圖,在平面直角坐標系中,多邊形OABCDE的頂點坐標分別是O(0,0)、A(0,6)、B(4,6)、C(4,4)、D(6,4),E(6,0),若直線L經過點M(2,3),且將多邊形OABCDE分割成面積相等的兩部分,則直線L
的函數(shù)表達式是
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了解九年級學生的物理實驗操作情況,進行了抽樣調查.隨機抽取了40名同學進行實驗操作,成績如下:
21 | 22 | 22 | 23 | 23 | 23 | 23 | 22 | 24 | 24 |
25 | 23 | 21 | 25 | 24 | 25 | 23 | 22 | 24 | 25 |
23 | 23 | 24 | 24 | 24 | 24 | 23 | 25 | 25 | 21 |
21 | 23 | 23 | 24 | 25 | 24 | 22 | 24 | 22 | 24 |
整理上面數(shù)據(jù),得到如下統(tǒng)計圖:
樣本數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù)如表所示:
統(tǒng)計量 | 平均數(shù) | 眾數(shù) | 中位數(shù) |
數(shù)值 | m | 24 | 23 |
根據(jù)以上信息,解答下列問題:
(1)如表中平均數(shù)的值為_______;
(2)扇形統(tǒng)計圖中“ 24分”部分的圓心角大小為_______度;
(3)根據(jù)樣本數(shù)據(jù),請估計該校九年級320名學生中物理實驗操作得滿分的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,CE是∠DCB的角平分線,且交AB于點E,DB與CE相交于點O,
(1)求證:△EBC是等腰三角形;
(2)已知:AB=7,BC=5,求的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com