拋物線與x軸交與,兩點(diǎn),
(1)求該拋物線的解析式;
(2)設(shè)(1)中的拋物線與y軸交于C點(diǎn),在該拋物線的對稱軸上是否存在點(diǎn)Q,使得△QAC的周長最小?若存在,求出Q點(diǎn)的坐標(biāo);若不存在,請說明理由.
(1)y=-x2-2x+3;(2)Q(-1,2)

試題分析:(1)由題意把A(1,0)B(-3,0)代入到拋物線中即可求得結(jié)果;
(2)過B、C作直線BC與對稱軸x=-1的交點(diǎn)就是Q點(diǎn),設(shè)直線BC解析式為y=kx+b,把B(-3,0)C(0,3)代入得直線BC的解析式,令XQ=-1,得YQ=2,即可求得結(jié)果.
(1)把A(1,0)B(-3,0)代入到拋物線中得
,解得
∴拋物線的解析式為y=-x2-2x+3;
(2)存在。
過B、C作直線BC與對稱軸x=-1的交點(diǎn)就是Q點(diǎn),
設(shè)直線BC解析式為y=kx+b,把B(-3,0)C(0,3)代入得
,解得
∴y="x+3"
令XQ=-1,得YQ=2   
∴Q(-1,2).
點(diǎn)評:二次函數(shù)的性質(zhì)是初中數(shù)學(xué)的重點(diǎn)和難點(diǎn),是中考常見題,一般難度不大,需熟練掌握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖(1),在平面直角坐標(biāo)系中,矩形ABCO,B點(diǎn)坐標(biāo)為(4,3),拋物線yx2bxc經(jīng)過矩形ABCO的頂點(diǎn)B、C,DBC的中點(diǎn),直線ADy軸交于E點(diǎn),點(diǎn)F在直線AD上且橫坐標(biāo)為6.

(1)求該拋物線解析式并判斷F點(diǎn)是否在該拋物線上;
(2)如圖,動點(diǎn)P從點(diǎn)C出發(fā),沿線段CB以每秒1個單位長度的速度向終點(diǎn)B運(yùn)動;
同時,動點(diǎn)M從點(diǎn)A出發(fā),沿線段AE以每秒個單位長度的速度向終點(diǎn)E運(yùn)動.過點(diǎn)PPHOA,垂足為H,連接MPMH.設(shè)點(diǎn)P的運(yùn)動時間為t秒.
①問EPPHHF是否有最小值,如果有,求出t的值;如果沒有,請說明理由.
②若△PMH是等腰三角形,求出此時t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,直線與拋物線交于A、B兩點(diǎn),點(diǎn)Ax軸上,點(diǎn)B的橫坐標(biāo)為-8.

(1)求該拋物線的解析式;
(2)點(diǎn)P是直線AB上方的拋物線上一動點(diǎn)(不與點(diǎn)AB重合),過點(diǎn)Px軸的垂線,垂足為C,交直線AB于點(diǎn)D,作PEAB于點(diǎn)E
①設(shè)△PDE的周長為l,點(diǎn)P的橫坐標(biāo)為x,求l關(guān)于x的函數(shù)關(guān)系式,并求出l的最大值;
②連接PA,以PA為邊作如圖所示一側(cè)的正方形APFG.隨著點(diǎn)P的運(yùn)動,正方形的大小、位置也隨之改變.當(dāng)頂點(diǎn)FG恰好落在y軸上時,求出對應(yīng)的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

九年級數(shù)學(xué)課本上,用“描點(diǎn)法”畫二次函數(shù)的圖像時,列出了如下的表格:
X
 
0
1
2
3
4
 

 
3
0
–1
0
3
 
那么該二次函數(shù)在= 5時,y =      

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,某隧道橫截面的上下輪廓線分別由拋物線對稱的一部分和矩形的一部分構(gòu)成,最大高度為6米,底部寬度為12米. 現(xiàn)以O(shè)點(diǎn)為原點(diǎn),OM所在直線為x軸建立直角坐標(biāo)系.

(1) 直接寫出點(diǎn)M及拋物線頂點(diǎn)P的坐標(biāo);
(2) 求出這條拋物線的函數(shù)解析式;
(3) 若要搭建一個矩形“支撐架”AD- DC- CB,使C、D點(diǎn)在拋物線上,A、B點(diǎn)在地面OM上,則這個“支撐架”總長的最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中0A=2,0B=4,將△OAB繞點(diǎn)O順時針旋轉(zhuǎn)90°至△OCD,若已知拋物線過點(diǎn)A、D、B.
  
(1)求此拋物線的解析式;
(2)連結(jié)DB,將△COD沿射線DB平移,速度為每秒個單位.
①經(jīng)過多少秒O點(diǎn)平移后的O′點(diǎn)落在線段AB上?
②設(shè)DO的中點(diǎn)為M,在平移的過程中,點(diǎn)M、A、B能否構(gòu)成等腰三角形?若能,求出構(gòu)成等腰三角形時M點(diǎn)的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知點(diǎn)A(x1,y1),B(x2,y2),在拋物線上,且x1<x2<-2,則y1    y2(填“>”或“=”或“<”)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

二次函數(shù) y=ax2-ax+1 (a≠0)的圖象與x軸有兩個交點(diǎn),其中一個交點(diǎn)為(,0),那么另一個交點(diǎn)坐標(biāo)為       

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(1)已知方程x2+px+q=0(p2-4q≥0)的兩根為x1、x2,求證:x1+x2=-p,x1·x2=q.(2)已知拋物線y=x2+px+q與x軸交于點(diǎn)A、B,且過點(diǎn)(―1,―1),設(shè)線段AB的長為d,當(dāng)p為何值時,d2取得最小值并求出該最小值.

查看答案和解析>>

同步練習(xí)冊答案