如圖,某隧道橫截面的上下輪廓線分別由拋物線對(duì)稱的一部分和矩形的一部分構(gòu)成,最大高度為6米,底部寬度為12米. 現(xiàn)以O(shè)點(diǎn)為原點(diǎn),OM所在直線為x軸建立直角坐標(biāo)系.

(1) 直接寫出點(diǎn)M及拋物線頂點(diǎn)P的坐標(biāo);
(2) 求出這條拋物線的函數(shù)解析式;
(3) 若要搭建一個(gè)矩形“支撐架”AD- DC- CB,使C、D點(diǎn)在拋物線上,A、B點(diǎn)在地面OM上,則這個(gè)“支撐架”總長(zhǎng)的最大值是多少?
(1) M(12,0),P(6,6)
(2) 
(3)當(dāng)m = 0時(shí),AD+DC+CB有最大值為18.

試題分析:(1)易知底部寬度為12米所以O(shè)M=12.則M(12,0),最大高度為6米,所以P(6,6).
(2)設(shè)此函數(shù)關(guān)系式為:.
∵函數(shù)經(jīng)過(guò)點(diǎn)(0,3),
,即
∴此函數(shù)解析式為:
.
(3)設(shè)A(m,0),則
B(12-m,0),C,D.
∴“支撐架”總長(zhǎng)AD+DC+CB =
= .  
∵此二次函數(shù)的圖象開口向下.
∴當(dāng)m = 0時(shí),AD+DC+CB有最大值為18.
點(diǎn)評(píng):本題難度中等,主要考查學(xué)生對(duì)二次函數(shù)的掌握,結(jié)合圖像分析各特殊點(diǎn)坐標(biāo)是解題關(guān)鍵。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直角坐標(biāo)系x O y中,二次函數(shù)的圖像與x軸、y軸的公共點(diǎn)分別為A(5,0)、B,點(diǎn)C在這個(gè)二次函數(shù)的圖像上,且橫坐標(biāo)為3.

(1)求這個(gè)二次函數(shù)的解析式;
(2)求∠BAC的正切值;
(3)如果點(diǎn)D在這個(gè)二次函數(shù)的圖像上,且∠DAC = 45°,求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

拋物線與x軸交與,兩點(diǎn),
(1)求該拋物線的解析式;
(2)設(shè)(1)中的拋物線與y軸交于C點(diǎn),在該拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使得△QAC的周長(zhǎng)最?若存在,求出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

小明的爸爸下崗后,自謀出路,做起了水果生意。一天,他先去批發(fā)市場(chǎng),用100元購(gòu)進(jìn)甲種水果,用150元購(gòu)進(jìn)乙種水果。乙種水果比甲種水果多10千克,乙種水果的批發(fā)價(jià)比甲種水果的批發(fā)價(jià)高0.5元。然后,他到市場(chǎng)零售部,都按每千克2.8元零售,結(jié)果乙種水果很快售完。甲種水果售出80%時(shí),出現(xiàn)滯銷,他便按原零售價(jià)的5折售完剩余水果。請(qǐng)你幫小明爸爸算一算這天賣水果是賠還是賺?賠或賺是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知二次函數(shù)的圖象如圖所示,則下列結(jié)論:①;②;③當(dāng)時(shí),的最小值為,④中,正確的有             

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,已知菱形ABCD的邊長(zhǎng)為2,點(diǎn)A在x軸負(fù)半軸上,點(diǎn)B在坐標(biāo)原點(diǎn).點(diǎn)D的坐標(biāo)為(,3),拋物線y=ax2+b(a≠0)經(jīng)過(guò)AB、CD兩邊的中點(diǎn).

(1)求這條拋物線的函數(shù)解析式;
(2)將菱形ABCD以每秒1個(gè)單位長(zhǎng)度的速度沿x軸正方向勻速平移(如圖2),過(guò)點(diǎn)B作BE⊥CD于點(diǎn)E,交拋物線于點(diǎn)F,連接DF、AF.設(shè)菱形ABCD平移的時(shí)間為t秒(0<t<
①當(dāng)t=1時(shí),△ADF與△DEF是否相似?請(qǐng)說(shuō)明理由;
②連接FC,以點(diǎn)F為旋轉(zhuǎn)中心,將△FEC按順時(shí)針?lè)较蛐D(zhuǎn)180°,得△FE′C′,當(dāng)△FE′C′落在x軸與拋物線在x軸上方的部分圍成的圖形中(包括邊界)時(shí),求t的取值范圍.(寫出答案即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某花木公司在20天內(nèi)銷售一批馬蹄蓮.其中,該公司的鮮花批發(fā)部日銷售量y1(萬(wàn)朵)與時(shí)間x(x為整數(shù),單位:天)部分對(duì)應(yīng)值如下表所示.
時(shí)間x(天)
0
4
8
12
16
20
銷量y1(萬(wàn)朵)
0
16
24
24
16
0
另一部分鮮花在淘寶網(wǎng)銷售,網(wǎng)上銷售日銷售量y2(萬(wàn)朵)與時(shí)間x(x為整數(shù),單位:天) 關(guān)系如下圖所示.

(1)請(qǐng)你從所學(xué)過(guò)的一次函數(shù)、二次函數(shù)和反比例函數(shù)中確定哪種函數(shù)能表示y1與x的變化規(guī)律,寫出y1與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(2)觀察馬蹄蓮網(wǎng)上銷售量y2與時(shí)間x的變化規(guī)律,請(qǐng)你設(shè)想商家采用了何種銷售策略使得銷售量發(fā)生了變化,并寫出銷售量y2與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(3)設(shè)該花木公司日銷售總量為y萬(wàn)朵,寫出y與時(shí)間x的函數(shù)關(guān)系式,并判斷第幾天日銷售總量y最大,并求出此時(shí)最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在函數(shù)中,我們規(guī)定:當(dāng)自變量增加一個(gè)單位時(shí),因變量的增加量稱為函數(shù)的平均變化率.例如,對(duì)于函數(shù)y=3x+1,當(dāng)自變量x增加1時(shí),因變量y=3(x+1)+1=3x+4,較之前增加3,故函數(shù)y=3x+1的平均變化率為3.

(1)①列車已行駛的路程s(km)與行駛的時(shí)間t(h)的函數(shù)關(guān)系式是s=300t,該函數(shù)的平均變化率是      ;其蘊(yùn)含的實(shí)際意義是       ;
②飛機(jī)著陸后滑行的距離y(m)與滑行的時(shí)間x(s)的函數(shù)關(guān)系式是y=-1.5x2+60x,求該函數(shù)的平均變化率;
(2)通過(guò)比較(1)中不同函數(shù)的平均變化率,你有什么發(fā)現(xiàn);
(3)如圖,二次函數(shù)y=ax2+bx+c的圖像經(jīng)過(guò)第一象限內(nèi)的三點(diǎn)A、B、C,過(guò)點(diǎn)A、B、C作x軸的垂線,垂足分別為D、E、F,AM⊥BE,垂足為M,BN⊥CF,垂足為N,DE=EF,試探究△AMB與△BNC面積的大小關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,是二次函數(shù)圖象的一部分,其對(duì)稱軸為,若其與x軸一交點(diǎn)為A(3,0),則有圖象可知不等式的解集是____________.

查看答案和解析>>

同步練習(xí)冊(cè)答案