【題目】如圖①,已知AD∥BC,∠B=∠D=120°.
(1)請問:AB與CD平行嗎?為什么?
(2)若點E、F在線段CD上,且滿足AC平分∠BAE,AF平分∠DAE,如圖②,求∠FAC的度數.
(3)若點E在直線CD上,且滿足∠EAC=∠BAC,求∠ACD:∠AED的值(請自己畫出正確圖形,并解答).
【答案】(1)平行,理由見解析;(2)∠FAC =30°;(3)∠ACD:∠AED=2:3或2:1.
【解析】試題分析:(1)依據平行線的性質以及判定,即可得到AB∥CD;
(2)依據AC平分∠BAE,AF平分∠DAE,即可得到∠EAC=∠BAE,∠EAF=∠DAE,進而得出∠FAC=∠EAC+∠EAF=(∠BAE+∠DAE)=∠DAB;
(3)分兩種情況討論:當點E在線段CD上時;當點E在DC的延長線上時,分別依據AB∥CD,進而得到∠ACD:∠AED的值.
試題解析:解:(1)平行.
如圖①.∵AD∥BC,∴∠A+∠B=180°.
又∵∠B=∠D=120°,∴∠D+∠A=180°,∴AB∥CD;
(2)如圖②.∵AD∥BC,∠B=∠D=120°,∴∠DAB=60°.
∵AC平分∠BAE,AF平分∠DAE,∴∠EAC=∠BAE,∠EAF=∠DAE,
∴∠FAC=∠EAC+∠EAF=(∠BAE+∠DAE)=∠DAB=30°;
(3)①如圖3,當點E在線段CD上時,
由(1)可得AB∥CD,∴∠ACD=∠BAC,∠AED=∠BAE.
又∵∠EAC=∠BAC,∴∠ACD:∠AED=2:3;
②如圖4,當點E在DC的延長線上時,
由(1)可得AB∥CD,∴∠ACD=∠BAC,∠AED=∠BAE.
又∵∠EAC=∠BAC,∴∠ACD:∠AED=2:1.
綜上所述:∠ACD:∠AED=2:3或2:1.
科目:初中數學 來源: 題型:
【題目】如圖,在5×5的正方形網格中,每個小正方形的邊長均為1,線段AB的端點在格點上,按要求畫出格點三角形,并求其面積.
(1)在圖①中畫出一個以 AB為腰的等腰三角形 ABC,其面積為____________.
(2) 在圖②中畫出一個以AB為底的等腰三角形ABC,其面積為__________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,點P、Q分別是等邊△ABC邊AB、BC上的動點(端點除外),點P從頂點A、點Q從頂點B同時出發(fā),且它們的運動速度相同,連接AQ、CP交于點M.
(1)求證:△ABQ≌△CAP;
(2)當點P、Q分別在AB、BC邊上運動時,∠QMC變化嗎?若變化,請說明理由;若不變,求出它的度數.
(3)如圖2,若點P、Q在運動到終點后繼續(xù)在射線AB、BC上運動,直線AQ、CP交點為M,則∠QMC變化嗎?若變化,請說明理由;若不變,直接寫出它的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】去冬今春,我市部分地區(qū)遭受了罕見的旱災,“旱災無情人有情”.某單位給某鄉(xiāng)中小學捐獻一批飲用水和蔬菜共320件,其中飲用水比蔬菜多80件.
(1)求飲用水和蔬菜各有多少件?
(2)現計劃租用甲、乙兩種貨車共8輛,一次性將這批飲用水和蔬菜全部運往該鄉(xiāng)中小學.已知每輛甲種貨車最多可裝飲用水40件和蔬菜10件,每輛乙種貨車最多可裝飲用水和蔬菜各20件.則運輸部門安排甲、乙兩種貨車時有幾種方案?請你幫助設計出來;
(3)在(2)的條件下,如果甲種貨車每輛需付運費400元,乙種貨車每輛需付運費360元.運輸部門應選擇哪種方案可使運費最少?最少運費是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y=kx+b與反比例函數y= 的圖象在第一象限交于A、B兩點,B點的坐標為(3,2),連接OA、OB,過B作BD⊥y軸,垂足為D,交OA于C,若OC=CA.
(1)求一次函數和反比例函數的表達式;
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】正方形ABCD的邊長為6cm,點E、M分別是線段BD、AD上的動點,連接AE并延長,交邊BC于F,過M作MN⊥AF,垂足為H,交邊AB于點N.
(1)如圖1,若點M與點D重合,求證:AF=MN;
(2)如圖2,若點M從點D出發(fā),以1cm/s的速度沿DA向點A運動,同時點E從點B出發(fā),以 cm/s的速度沿BD向點D運動,運動時間為t s.
①設BF=y cm,求y關于t的函數表達式;
②當BN=2AN時,連接FN,求FN的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,直線AB,CD相交于點O,作∠DOE=∠BOD,OF平分∠AOE.
(1)判斷OF與OD的位置關系;
(2)若∠AOC∶∠AOD=1∶5,求∠EOF的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線l1:y=﹣x+1與x軸,y軸分別交于點A和點B,直線l2:y=kx(k≠0)與直線l1在第一象限交于點C.若∠BOC=∠BCO,則k的值為( )
A. B. C. D. 2
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com