【題目】去冬今春,我市部分地區(qū)遭受了罕見的旱災,旱災無情人有情.某單位給某鄉(xiāng)中小學捐獻一批飲用水和蔬菜共320件,其中飲用水比蔬菜多80件.

1)求飲用水和蔬菜各有多少件?

2)現(xiàn)計劃租用甲、乙兩種貨車共8輛,一次性將這批飲用水和蔬菜全部運往該鄉(xiāng)中小學.已知每輛甲種貨車最多可裝飲用水40件和蔬菜10件,每輛乙種貨車最多可裝飲用水和蔬菜各20件.則運輸部門安排甲、乙兩種貨車時有幾種方案?請你幫助設計出來;

3)在(2)的條件下,如果甲種貨車每輛需付運費400元,乙種貨車每輛需付運費360元.運輸部門應選擇哪種方案可使運費最少?最少運費是多少元?

【答案】

1飲用水200件 蔬菜120

244, 甲 35, 甲 26

32960

【解析】試題分析:(1)關系式為:飲用水件數(shù)+蔬菜件數(shù)=320;

2)關系式為:40×甲貨車輛數(shù)+20×乙貨車輛數(shù)≥20010×甲貨車輛數(shù)+20×乙貨車輛數(shù)≥120;

3)分別計算出相應方案,比較即可.

試題解析:(1)設飲用水有x件,則蔬菜有(x﹣80)件.

x+x﹣80=320,

解這個方程,得x=200

∴x﹣80=120

答:飲用水和蔬菜分別為200件和120件;

2)設租用甲種貨車m輛,則租用乙種貨車(8﹣m)輛.得:

,

解這個不等式組,得2≤m≤4

∵m為正整數(shù),

∴m=234,安排甲、乙兩種貨車時有3種方案.

設計方案分別為:

甲車2輛,乙車6輛;甲車3輛,乙車5輛;甲車4輛,乙車4輛;

33種方案的運費分別為:

①2×400+6×360=2960(元);

②3×400+5×360=3000(元);

③4×400+4×360=3040(元);

方案運費最少,最少運費是2960元.

答:運輸部門應選擇甲車2輛,乙車6輛,可使運費最少,最少運費是2960元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料:

一般地,當α、β為任意角時,tan(α+β)與tan(α﹣β)的值可以用下面的公式求得:tan(α±β)=

例如:tan15°=tan45°﹣30°)== =

= =

根據(jù)以上材料,解決下列問題:

1)求tan75°的值;

2)都勻文峰塔,原名文筆塔,始建于明代萬歷年間,系五層木塔,文峰塔的木塔年久傾毀,僅存塔基,1983年,人民政府撥款維修文峰塔,成為今天的七層六面實心石塔(圖1),小華想用所學知識來測量該鐵搭的高度,如圖2,已知小華站在離塔底中心A5.7米的C處,測得塔頂?shù)难鼋菫?/span>75°,小華的眼睛離地面的距離DC1.72米,請幫助小華求出文峰塔AB的高度.(精確到1米,參考數(shù)據(jù)1.732, 1.414

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩車從A城出發(fā)勻速行駛至B城.在整個行駛過程中,甲、乙兩車離開A城的距離y(千米)與甲車行駛的時間t(小時)之間的函數(shù)關系如圖所示.則下列結論:

①A,B兩城相距300千米;

②乙車比甲車晚出發(fā)1小時,卻早到1小時;

③乙車出發(fā)后2.5小時追上甲車;

④當甲、乙兩車相距50千米時,t=

其中正確的結論有(

A.1個 B.2個 C.3個 D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)在如圖所示的平面直角坐標系中表示下面各點:A0,3);B5,0);C3-5);D-3,-5);E35);

2連接CE,則直線CEy軸是什么位置關系?

3D分別到xy軸的距離是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某興趣小組為了了解本校學生參加課外體育鍛煉情況,隨機抽取本校40名學生進行問卷調查,統(tǒng)計整理并繪制了如下兩幅尚不完整的統(tǒng)計圖:

根據(jù)以上信息解答下列問題:

1)課外體育鍛煉情況統(tǒng)計圖中,經(jīng)常參加所對應的圓心角的度數(shù)為 ;經(jīng)常參加課外體育鍛煉的學生最喜歡的一種項目中,喜歡足球的人數(shù)有 人,補全條形統(tǒng)計圖.

2)該校共有1200名學生,請估計全校學生中經(jīng)常參加課外體育鍛煉并喜歡的項目是乒乓球的人數(shù)有多少人?

3)若在乒乓球籃球、足球、羽毛球項目中任選兩個項目成立興趣小組,請用列表法或畫樹狀圖的方法求恰好選中乒乓球、籃球這兩個項目的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,我們定義直線y=axa為拋物線a、b、c為常數(shù),a0)的“夢想直線”;有一個頂點在拋物線上,另有一個頂點在y軸上的三角形為其“夢想三角形”.

已知拋物線與其“夢想直線”交于A、B兩點(點A在點B的左側),與x軸負半軸交于點C

1)填空:該拋物線的“夢想直線”的解析式為 ,點A的坐標為 ,點B的坐標為 ;

2)如圖,點M為線段CB上一動點,將△ACMAM所在直線為對稱軸翻折,點C的對稱點為N,若△AMN為該拋物線的“夢想三角形”,求點N的坐標;

3)當點E在拋物線的對稱軸上運動時,在該拋物線的“夢想直線”上,是否存在點F,使得以點A、C、EF為頂點的四邊形為平行四邊形?若存在,請直接寫出點E、F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明同學對平面圖形進行了自主探究:圖形的頂點數(shù) V,被分成的區(qū)域數(shù) F,線段數(shù) E 三者之間是否存在確定的數(shù)量關系.如圖是他在探究時畫出的 5 個圖形:

1)根據(jù)上圖完成下表:

2)猜想:一個平面圖形中頂點數(shù) V,區(qū)域數(shù) F,線段數(shù) E 之間的數(shù)量關系是

3)計算:已知一個平面圖形有 24 條線段,被分成 9 個區(qū)域,則這個平面圖形的頂點有 ;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】負數(shù)最早出現(xiàn)在_____書中 (填書名)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用一個平面去截幾何體,截面不可能是三角形的是(

A.圓柱B.圓錐C.三棱柱D.正方體

查看答案和解析>>

同步練習冊答案