【題目】已知長方形硬紙板ABCD的長BC為40cm,寬CD為30cm,按如圖所示剪掉2個小正方形和2個小長方形(即圖中陰影部分),將剩余部分折成一個有蓋的長方體盒子,

設(shè)剪掉的小正方形邊長為xcm.(紙板的厚度忽略不計)

(1)填空:EF= .cm,GH= .cm;(用含x的代數(shù)式表示)

(2)若折成的長方體盒子的表面積為950cm2,求該長方體盒子的體積

【答案】(1)(30-2x), (20-x);(2)此時長方體盒子的體積為1500cm3.

【解析】試題分析:(1)根據(jù)所給出的圖形可直接得出EFGH;

2)根據(jù)圖示,可得40×30-2x2-2×20x=950,求出x的值,再根據(jù)長方體的體積公式列出算式,即可求出答案.

試題解析:(1EF=30-2xcm,GH=20-xcm

2)根據(jù)題意,得:40×30-2x2-2×20x=950,

解得:x1=5,x2=-25(不合題意,舍去),

所以長方體盒子的體積=x30-2x)(20-x=5×20×15=1500cm3).

答:此時長方體盒子的體積為1500cm3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線經(jīng)過點A(﹣1,0)和B2,0),直線yx+m經(jīng)過點A和拋物線的另一個交點為C

1)求拋物線的解析式.

2)動點P、Q從點A出發(fā),分別沿線段AC和射線AO運(yùn)動,運(yùn)動的速度分別是每秒4個單位長度和3個單位長度.連接PQ,設(shè)運(yùn)動時間為t秒,APQ的面積為s,求st的函數(shù)關(guān)系式.(不寫t的取值范圍)

3)在(2)的條件下,線段PQ交拋物線于點D,點E在線段AP上,且AEAQ,連接ED,過點DDFDEx軸于點F,當(dāng)DFDE時,求點F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用適當(dāng)?shù)姆椒ń夥匠蹋?/span>

(1)  

(2) - 2x5

(3) x 2 -4x+20

(4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC內(nèi)接于⊙O,AD為⊙O的直徑,ADBC相交于點E,且BECE

1)請判斷ADBC的位置關(guān)系,并說明理由;

2)若BC6,ED2,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=8,AC=6.點D在邊AB上,AD=4.5ABC的角平分線AECD于點F

1)求證:ACD∽△ABC;

2)求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yx軸交于A、B兩點,△ABC為等邊三角形,∠COD60°,且ODOC

1A點坐標(biāo)為   ,B點坐標(biāo)為   

2)求證:點D在拋物線上;

3)點M在拋物線的對稱軸上,點N在拋物線上,若以M、NO、D為頂點的四邊形為平行四邊形,請直接寫出點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在去年的創(chuàng)建全國文明城市活動中,抱著我為文明瑞安出一份力的想法,小華就公眾對在餐廳吸煙的態(tài)度進(jìn)行了隨機(jī)抽樣調(diào)查,主要有四種態(tài)度:A、顧客出面制止;B、勸說進(jìn)吸煙室;C、餐廳老板出面制止;D、無所謂.他將調(diào)查結(jié)果繪制了兩幅不完整的統(tǒng)計圖.請你根據(jù)圖中的信息回答下列問題:

(1)這次抽樣的公眾有__________人;

(2)請將統(tǒng)計圖①補(bǔ)充完整;

(3)在統(tǒng)計圖②中,“無所謂”部分所對應(yīng)的圓心角是多少度?

(4)若瑞安全市人口有120萬人,估計贊成“餐廳老板出面制止”的有多少萬人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知 ABC 的三個頂點的坐標(biāo)分別為 A(-2,3)、B(-6,0)、C(-1,0).

1)將ABC繞坐標(biāo)原點O逆時針旋轉(zhuǎn) 90°. 畫出圖形,直接寫出點B的對應(yīng)點的坐標(biāo);

2)請直接寫出:以 AB、C 為頂點的平行四邊形的第四個頂點 D 的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,說法正確的個數(shù)是(

1)兩個等邊三角形一定相似;(2)有一個角相等的兩個菱形一定相似;

3)兩個等腰三角形腰上的高和腰對應(yīng)成比例,則這兩個三角形必相似;

4)兩邊及第三邊上的中線對應(yīng)成比例的兩三角形相似.

A. 1B. 2C. 3D. 4

查看答案和解析>>

同步練習(xí)冊答案