1.將直線y=-x+2向下平移3個單位,所得直線經(jīng)過的象限是二、三、四.

分析 直接根據(jù)“上加下減”的平移規(guī)律求解即可.

解答 解:將直線y=-x+2向下平移3個單位長度,所得直線的解析式為y=-x+2-3,即y=-x-1,經(jīng)過二、三、四象限,
故答案為二、三、四.

點評 本題考查圖形的平移變換和函數(shù)解析式之間的關(guān)系.在平面直角坐標(biāo)系中,圖形的平移與圖形上某點的平移相同.平移中點的變化規(guī)律是:橫坐標(biāo)右移加,左移減;縱坐標(biāo)上移加,下移減.平移后解析式有這樣一個規(guī)律“左加右減,上加下減”.關(guān)鍵是要搞清楚平移前后的解析式有什么關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在平面直角坐標(biāo)系中,A、B、C三點的坐標(biāo)分別為(0,1)(2,0)(2,1.5)
(1)求三角形ABC的面積.
(2)如果在第二象限內(nèi)有一點P(a,$\sqrt{2}$),試用含a的式子表示四邊形ABOP的面積.
(3)在(2)的條件下,是否存在點P,使得四邊形ABOP的面積與三角形ABC的面積相等?若存在,請求出點P的坐標(biāo)?若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

12.在平面直角坐標(biāo)系中,△ABO的三個頂點坐標(biāo)分別為:A(2,3)、B(3,1)、O(0,0).
(1)將△ABO向左平移4個單位,畫出平移后的△A1B1O1
(2)將△ABO繞點O順時針旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后得到的△A2B2O.此時四邊形ABA2B2的形狀是平行四邊形.
(3)在平面上是否存在點D,使得以A、B、O、D為頂點的四邊形是平行四邊形,若存在請直接寫出符合條件的所有點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

9.直線y=-3x+2向下平移1個單位后所得直線的表達式是y=-3x+1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

16.若一次函數(shù)y=(m-1)x+m的函數(shù)值y隨x的增大而減小,那么m的取值范圍是m<1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

6.下面圖形中,既是軸對稱圖形,又是中心對稱圖形的是( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.如圖,將方格紙中的三角形ABC先向右平移2格得到三角形DEF,再將三角形DEF向上平移3格得到三角形GPH,
(1)動手操作:按上面步驟作出經(jīng)過兩次平移后分別得到的三角形;
(2)設(shè)AC與ED相交于點M,則圖中與AC既平行又相等的線段有DF,GH,圖中與∠BAC相等的角有∠D,∠G,∠AMD,∠CME;
(3)若∠BAC=43°,∠B=32°,求∠HAC和∠DMC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

10.如圖,將三角形紙板ABC沿直線AB向右平行移動,使∠CAB到達∠DBE的位置,若∠CAB=50°,∠ABC=100°,則∠CBE的度數(shù)為(  )
A.50°B.40°C.30°D.100°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

11.某校組織春游活動,提供了A、B、C、D四個景區(qū)供學(xué)生選擇,并把選擇最多的景區(qū)作為本次春游活動的目的地.經(jīng)過抽樣調(diào)查,并將采集的數(shù)據(jù)繪制成如下兩幅不完整的統(tǒng)計圖,請根據(jù)圖①、②所提供的信息,解答下列問題:
(1)本次抽樣調(diào)查的學(xué)生有180名,其中選擇景區(qū)A的學(xué)生的頻率是$\frac{1}{5}$:
(2)請將圖②補充完整:
(3)若該校共有1200名學(xué)生,根據(jù)抽樣調(diào)查的結(jié)果估計全校共有多少名學(xué)生選擇景區(qū)C?(要有解答過程)

查看答案和解析>>

同步練習(xí)冊答案