四邊形ABCD是正方形,AC與BD,相交于點(diǎn)O,點(diǎn)E、F是直線AD上兩動點(diǎn),且AE=DF,CF所在直線與對角線BD所在直線交于點(diǎn)G,連接AG,直線AG交BE于點(diǎn)H.
(1)如圖1,當(dāng)點(diǎn)E、F在線段AD上時(shí),①求證:∠DAG=∠DCG;②猜想AG與BE的位置關(guān)系,并加以證明;
(2)如圖2,在(1)條件下,連接HO,試說明HO平分∠BHG;
(3)當(dāng)點(diǎn)E、F運(yùn)動到如圖3所示的位置時(shí),其它條件不變,請將圖形補(bǔ)充完整,并直接寫出∠BHO的度數(shù).
【考點(diǎn)】四邊形綜合題;全等三角形的判定與性質(zhì);正方形的性質(zhì).
【專題】綜合題.
【分析】(1)①根據(jù)正方形的性質(zhì)得DA=DC,∠ADB=∠CDB=45°,則可根據(jù)“SAS”證明△ADG≌△CDG,所以∠DAG=∠DCG;②根據(jù)正方形的性質(zhì)得AB=DC,∠BAD=∠CDA=90°,根據(jù)“SAS”證明△ABE≌△DCF,則∠ABE=∠DCF,由于∠DAG=∠DCG,所以∠DAG=∠ABE,然后利用∠DAG+∠BAG=90°得到∠ABE+∠BAG=90°,于是可判斷AG⊥BE;
(2)如答圖1所示,過點(diǎn)O作OM⊥BE于點(diǎn)M,ON⊥AG于點(diǎn)N,證明△AON≌△BOM,可得四邊形OMHN為正方形,因此HO平分∠BHG結(jié)論成立;
(3)如答圖2所示,與(1)同理,可以證明AG⊥BE;過點(diǎn)O作OM⊥BE于點(diǎn)M,ON⊥AG于點(diǎn)N,構(gòu)造全等三角形△AON≌△BOM,從而證明OMHN為正方形,所以HO平分∠BHG,即∠BHO=45°.
【解答】(1)①證明:∵四邊形ABCD為正方形,
∴DA=DC,∠ADB=∠CDB=45°,
在△ADG和△CDG中
,
∴△ADG≌△CDG(SAS),
∴∠DAG=∠DCG;
②解:AG⊥BE.理由如下:
∵四邊形ABCD為正方形,
∴AB=DC,∠BAD=∠CDA=90°,
在△ABE和△DCF中
,
∴△ABE≌△DCF(SAS),
∴∠ABE=∠DCF,
∵∠DAG=∠DCG,
∴∠DAG=∠ABE,
∵∠DAG+∠BAG=90°,
∴∠ABE+∠BAG=90°,
∴∠AHB=90°,
∴AG⊥BE;
(2)解:由(1)可知AG⊥BE.
如答圖1所示,過點(diǎn)O作OM⊥BE于點(diǎn)M,ON⊥AG于點(diǎn)N,則四邊形OMHN為矩形.
∴∠MON=90°,
又∵OA⊥OB,
∴∠AON=∠BOM.
∵∠AON+∠OAN=90°,∠BOM+∠OBM=90°,
∴∠OAN=∠OBM.
在△AON與△BOM中,
∴△AON≌△BOM(AAS).
∴OM=ON,
∴矩形OMHN為正方形,
∴HO平分∠BHG.
(3)將圖形補(bǔ)充完整,如答圖2示,∠BHO=45°.
與(1)同理,可以證明AG⊥BE.
過點(diǎn)O作OM⊥BE于點(diǎn)M,ON⊥AG于點(diǎn)N,
與(2)同理,可以證明△AON≌△BOM,
可得OMHN為正方形,所以HO平分∠BHG,
∴∠BHO=45°.
【點(diǎn)評】本題考查了四邊形的綜合題:熟練掌握正方形的性質(zhì),熟練運(yùn)用全等三角形的判定與性質(zhì)解決線段和角相等的問題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
下列說法正確的是( )
①代數(shù)式的意義是a除以b的商與1的和;
②要使y=有意義,則x應(yīng)該滿足0<x≤3;
③當(dāng)2x﹣1=0時(shí),整式2xy﹣8x2y+8x3y的值是0;
④地球上的陸地面積約為149000000平方千米,用科學(xué)記數(shù)法表示為1.49×108平方千米.
A.①④ B.①② C.②③ D.③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,正方形的面積是12,是等邊三角形,點(diǎn)在正方形內(nèi),在對角線上有一點(diǎn),使最小,則這個(gè)最小值為( )
A、 B、 C、 D、
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
甲、乙兩地之間的高速公路全長200千米,比原來國道的長度減少了20千米.高速公路通車后,某長途汽車的行駛速度提高了45千米/時(shí),從甲地到乙地的行駛時(shí)間縮短了一半.設(shè)該長途汽車在原來國道上行駛的速度為x千米/時(shí),根據(jù)題意,下列方程正確的是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
方格紙中的每個(gè)小方格都是邊長為1個(gè)單位的正方形,在建立平面 直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)C的坐標(biāo)為(4,-1).
(1)試作出△ABC以C為旋轉(zhuǎn)中心,沿順時(shí)針方向旋轉(zhuǎn)90°后的圖形△A1B1C;
(2)以原點(diǎn)O為對稱中心,再畫出與△ABC關(guān)于原點(diǎn)O對稱的△A2B2C2,并寫出點(diǎn)C2的坐標(biāo) ____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com