【題目】化簡與計算
(1)( ﹣2)0+( 1+4cos30°﹣|﹣ |.
(2)先化簡,再求值: ÷( ﹣a﹣2),其中a= ﹣3.

【答案】
(1)解:原式=1+3+2 ﹣2 =4
(2)解:原式= ÷ =﹣ =﹣ ,

當a= ﹣3時,原式=﹣


【解析】(1)原式第一項利用零指數(shù)冪法則計算,第二項利用負整數(shù)指數(shù)冪法則計算,第三項利用特殊角的三角函數(shù)值計算,最后一項利用絕對值的代數(shù)意義化簡,計算即可得到結(jié)果;(2)原式括號中兩項通分并利用同分母分式的減法法則計算,同時利用除法法則變形,約分得到最簡結(jié)果,把a的值代入計算即可求出值.
【考點精析】根據(jù)題目的已知條件,利用零指數(shù)冪法則和整數(shù)指數(shù)冪的運算性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握零次冪和負整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù));aman=am+n(m、n是正整數(shù));(amn=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù)).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,半圓O的直徑AC=2 ,點B為半圓的中點,點D在弦AB上,連結(jié)CD,作BF⊥CD于點E,交AC于點F,連結(jié)DF,當△BCE和△DEF相似時,BD的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=90°,AB=AC,DA∥BC,tan∠DBA= ,若CD=2 ,則線段BC的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象交x軸于A、B兩點,交y軸于點C,且B(1,0),C(0,3),將△BOC繞點O按逆時針方向旋轉(zhuǎn)90°,C點恰好與A重合.

(1)求該二次函數(shù)的解析式;
(2)若點P為線段AB上的任一動點,過點P作PE∥AC,交BC于點E,連結(jié)CP,求△PCE面積S的最大值;
(3)設(shè)拋物線的頂點為M,Q為它的圖象上的任一動點,若△OMQ為以O(shè)M為底的等腰三角形,求Q點的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,甲轉(zhuǎn)盤被分成 3 個面積相等的扇形,乙轉(zhuǎn)盤被分成4個面積相等的扇形,每一個扇形都標有相應(yīng)的數(shù)字.同時轉(zhuǎn)動兩個轉(zhuǎn)盤,當轉(zhuǎn)盤停止后,設(shè)甲轉(zhuǎn)盤中指針所指區(qū)域內(nèi)的數(shù)字為x,乙轉(zhuǎn)盤中指針所指區(qū)域內(nèi)的數(shù)字為y(當指針指在邊界線上時,重轉(zhuǎn),直到指針指向一個區(qū)域為止).
(1)請你用畫樹狀圖或列表格的方法,求點(x,y)落在第二象限內(nèi)的概率;
(2)直接寫出點(x,y)落在函數(shù)y=﹣ 圖象上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】化簡與計算
(1)( ﹣2)0+( 1+4cos30°﹣|﹣ |.
(2)先化簡,再求值: ÷( ﹣a﹣2),其中a= ﹣3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形ABCD中,AD∥BC,∠C=90°,∠A=120°,AD=2,BD平分∠ABC,則梯形ABCD的周長是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,點E在BC邊上,且CE:BC=2:3,AC與DE相交于點F,若SAFD=9,則SEFC=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC紙片中,∠ACB=90°,AC=6,BC=8,沿過其中一個頂點的直線把△ABC剪開,若剪得的兩個三角形中僅有一個是等腰三角形,那么這個等腰三角形的面積不可能是(
A.14.4
B.19.2
C.18.75
D.17

查看答案和解析>>

同步練習(xí)冊答案