【題目】在△ABC紙片中,∠ACB=90°,AC=6,BC=8,沿過(guò)其中一個(gè)頂點(diǎn)的直線把△ABC剪開,若剪得的兩個(gè)三角形中僅有一個(gè)是等腰三角形,那么這個(gè)等腰三角形的面積不可能是(
A.14.4
B.19.2
C.18.75
D.17

【答案】D
【解析】解:在Rt△ABC中,∠ACB=90°,AC=6,BC=8, ∴AB= =10,SABC= ACBC=24.
沿過(guò)其中一個(gè)頂點(diǎn)的直線把△ABC剪開,若剪得的兩個(gè)三角形中僅有一個(gè)是等腰三角形,有四種情況:①當(dāng)AC=AP=6時(shí),如圖1所示,

S等腰ACP= SABC= ×24=14.4;②當(dāng)BC=BP=8時(shí),如圖2所示,

S等腰BCP= SABC= ×24=19.2;③當(dāng)PA=PB時(shí),如圖3所示,

AC2+CP2=PA2 , 即62+(8﹣PB)2=PB2 ,
解得:PB= ,
∴S等腰PAB= PBAC= × ×6= =18.75;④當(dāng)CA=CP=6時(shí),如圖4所示,

S等腰CAP= CACP= ×6×6=18.
綜上所述:等腰三角形的面積可能為14.4、19.2、18.75或18.
故選D.
【考點(diǎn)精析】本題主要考查了等腰三角形的性質(zhì)和勾股定理的概念的相關(guān)知識(shí)點(diǎn),需要掌握等腰三角形的兩個(gè)底角相等(簡(jiǎn)稱:等邊對(duì)等角);直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】化簡(jiǎn)與計(jì)算
(1)( ﹣2)0+( 1+4cos30°﹣|﹣ |.
(2)先化簡(jiǎn),再求值: ÷( ﹣a﹣2),其中a= ﹣3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,梯形ABCD中,AD∥BC,AB=DC,點(diǎn)P是AD邊上一點(diǎn),聯(lián)結(jié)PB、PC,且AB2=APPD,則圖中有對(duì)相似三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一條長(zhǎng)為2014個(gè)單位長(zhǎng)度且沒(méi)有彈性的細(xì)線(線的粗細(xì)忽略不計(jì))的一端固定在點(diǎn)A處,并按A﹣B﹣C﹣D﹣A…的規(guī)律繞在四邊形ABCD的邊上,則細(xì)線另一端所在位置的點(diǎn)的坐標(biāo)是( )

A.(﹣1,0)
B.(1,﹣2)
C.(1,1)
D.(﹣1,﹣1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的布袋里裝有4個(gè)標(biāo)有1,2,3,4的小球,它們的形狀、大小、質(zhì)地完全相同,小李從布袋里隨機(jī)取出一個(gè)小球,記下數(shù)字為x,小張?jiān)谑O碌?個(gè)小球中隨機(jī)取出一個(gè)小球,記下數(shù)字為y,這樣確定了點(diǎn)Q的坐標(biāo)(x,y).
(1)畫樹狀圖或列表,寫出點(diǎn)Q所有可能的坐標(biāo);
(2)求點(diǎn)Q(x,y)在函數(shù)y=﹣x+5圖象上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,從點(diǎn)A看一山坡上的電線桿PQ,觀測(cè)點(diǎn)P的仰角是45°,向前走6m到達(dá)B點(diǎn),測(cè)得頂端點(diǎn)P和桿底端點(diǎn)Q的仰角分別是60°和30°,求該電線桿PQ的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)△ABC的一邊長(zhǎng)為x,這條邊上的高為y,y與x滿足的反比例函數(shù)關(guān)系如圖所示.當(dāng)△ABC為等腰直角三角形時(shí),x+y的值為(
A.4
B.5
C.5或3
D.4或3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)與直線y=x+1相交于A(﹣1,0),B(4,m)兩點(diǎn),且拋物線經(jīng)過(guò)點(diǎn)C(5,0).

(1)求拋物線的解析式;
(2)點(diǎn)P是拋物線上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A、點(diǎn)B重合),過(guò)點(diǎn)P作直線PD⊥x軸于點(diǎn)D,交直線AB于點(diǎn)E.
①當(dāng)PE=2ED時(shí),求P點(diǎn)坐標(biāo);
②是否存在點(diǎn)P使△BEC為等腰三角形?若存在請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某次世界魔方大賽吸引世界各地共600名魔方愛好者參加,本次大賽首輪進(jìn)行3×3階魔方賽,組委會(huì)隨機(jī)將愛好者平均分到20個(gè)區(qū)域,每個(gè)區(qū)域30名同時(shí)進(jìn)行比賽,完成時(shí)間小于8秒的愛好者進(jìn)入下一輪角逐;如圖是3×3階魔方賽A區(qū)域30名愛好者完成時(shí)間統(tǒng)計(jì)圖,求: ①A區(qū)域3×3階魔方愛好者進(jìn)入下一輪角逐的人數(shù)的比例(結(jié)果用最簡(jiǎn)分?jǐn)?shù)表示).
②若3×3階魔方賽各個(gè)區(qū)域的情況大體一致,則根據(jù)A區(qū)域的統(tǒng)計(jì)結(jié)果估計(jì)在3×3階魔方賽后進(jìn)入下一輪角逐的人數(shù).
③若3×3階魔方賽A區(qū)域愛好者完成時(shí)間的平均值為8.8秒,求該項(xiàng)目賽該區(qū)域完成時(shí)間為8秒的愛好者的概率(結(jié)果用最簡(jiǎn)分?jǐn)?shù)表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案