已知:以AB為直徑的半圓上有C、D兩點(diǎn),∠DCB=120°,∠ADC=105°,CD=1(如圖),求四邊形ABCD的面積.

解:如圖,連接OD,OC.作CE⊥AB.
∵∠DCB=120°,
∴∠DAB=60°,
∴△OAD為等邊三角形,
∴∠ODC=105°-60°=45°,
∴△OCD為等腰直角三角形,∠OCB=OBC=75°.
∵CD=1.
∴OD=.CE==
∴△AOD面積=2=
△ODC面積=
△OCB=OB×CE=
∴四邊形ABCD的面積=++=
分析:連接OD,OC.作CE⊥AB.從而得到△OAD為等邊三角形,△OCD為等腰直角三角形,從而將四邊形轉(zhuǎn)化為特殊的三角形來(lái)求面積.
點(diǎn)評(píng):本題考查了圓周角定理,利用圓周角定理得到特殊的角是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:以AB為直徑的半圓上有C、D兩點(diǎn),∠DCB=120°,∠ADC=105°,CD=1(如圖),求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知A(-8,0),B(2,0),以AB為直徑的半圓與y軸正半軸交于點(diǎn)C,則經(jīng)過(guò)A、B、C三點(diǎn)的拋物線的解析式為
-
1
4
x2-
3
2
x+4.
-
1
4
x2-
3
2
x+4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線y=ax2+b經(jīng)過(guò)點(diǎn)A(4,4)和點(diǎn)B(0,-4).C是x軸上的一個(gè)動(dòng)點(diǎn).
(1)求拋物線的解析式;
(2)若點(diǎn)C在以AB為直徑的圓上,求點(diǎn)C的坐標(biāo);
(3)將點(diǎn)A繞C點(diǎn)逆時(shí)針旋轉(zhuǎn)90°得到點(diǎn)D,當(dāng)點(diǎn)D在拋物線上時(shí),求出所有滿足條件的點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008年浙江省寧波市慈溪中學(xué)保送生招生數(shù)學(xué)模擬卷(三)(解析版) 題型:解答題

已知:以AB為直徑的半圓上有C、D兩點(diǎn),∠DCB=120°,∠ADC=105°,CD=1(如圖),求四邊形ABCD的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案