【題目】如圖,在矩形ABCD中,AB═2,AD=,PBC邊上的一點,且BP=2CP.

(1)用尺規(guī)在圖①中作出CD邊上的中點E,連接AE、BE(保留作圖痕跡,不寫作法);

(2)如圖②,在(1)的條體下,判斷EB是否平分∠AEC,并說明理由;

(3)如圖③,在(2)的條件下,連接EP并廷長交AB的廷長線于點F,連接AP,不添加輔助線,PFB能否由都經(jīng)過P點的兩次變換與PAE組成一個等腰三角形?如果能,說明理由,并寫出兩種方法(指出對稱軸、旋轉(zhuǎn)中心、旋轉(zhuǎn)方向和平移距離)

【答案】(1)作圖見解析;(2)EB是平分∠AEC,理由見解析; (3)PFB能由都經(jīng)過P點的兩次變換與△PAE組成一個等腰三角形,變換的方法為:將△BPF繞點B順時針旋轉(zhuǎn)120°和△EPA重合,①沿PF折疊,②沿AE折疊.

【解析】1)根據(jù)作線段的垂直平分線的方法作圖即可得出結(jié)論;

(2)先求出DE=CE=1,進(jìn)而判斷出ADE≌△BCE,得出∠AED=BEC,再用銳角三角函數(shù)求出∠AED,即可得出結(jié)論;

(3)先判斷出AEP≌△FBP,即可得出結(jié)論.

(1)依題意作出圖形如圖①所示;

(2)EB是平分∠AEC,理由:

∵四邊形ABCD是矩形,

∴∠C=D=90°,CD=AB=2,BC=AD=,

∵點ECD的中點,

DE=CE=CD=1,

ADEBCE中,,

∴△ADE≌△BCE,

∴∠AED=BEC,

RtADE中,AD=,DE=1,

tanAED==,

∴∠AED=60°,

∴∠BCE=AED=60°,

∴∠AEB=180°﹣AED﹣BEC=60°=BEC,

BE平分∠AEC;

(3)BP=2CP,BC==,

CP=,BP=,

RtCEP中,tanCEP==

∴∠CEP=30°,

∴∠BEP=30°,

∴∠AEP=90°,

CDAB,

∴∠F=CEP=30°,

RtABP中,tanBAP==

∴∠PAB=30°,

∴∠EAP=30°=F=PAB,

CBAF,

AP=FP,

∴△AEP≌△FBP,

∴△PFB能由都經(jīng)過P點的兩次變換與PAE組成一個等腰三角形,

變換的方法為:將BPF繞點B順時針旋轉(zhuǎn)120°EPA重合,①沿PF折疊,②沿AE折疊.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,王老師將某班近三個月跳躍類項目的訓(xùn)練情況做了統(tǒng)計,并繪制了折線統(tǒng)計圖,則根據(jù)圖中信息以下判斷錯誤的是(

A.男女生5月份的平均成績一樣

B.4月到6月,女生平均成績一直在進(jìn)步

C.4月到5月,女生平均成績的增長率約為

D.5月到6月女生平均成績比4月到5月的平均成績增長快

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c與x軸交于A、B兩點(點A在點B左側(cè)),與y軸交于點C,且當(dāng)x=0和x=2時,y的值相等.直線y=3x﹣7與這條拋物線相交于兩點,其中一點的橫坐標(biāo)是4,另一點是這條拋物線的頂點M.

(1)求這條拋物線的解析式;

(2)P為線段BM上一點,過點P向x軸引垂線,垂足為Q.若點P在線段BM上運動(點P不與點B、M重合),設(shè)OQ的長為t,四邊形PQAC的面積為S.求S與t之間的函數(shù)關(guān)系式及自變量t的取值范圍;

(3)在線段BM上是否存在點N,使NMC為等腰三角形?若存在,請求出點N的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是等邊三角形,點邊的中點,點在直線上,若是軸對稱圖形,則的度數(shù)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在等腰三角形△ABC中,AC=BC,D、E分別為AB、BC上一點,∠CDE=∠A.

(1)如圖,若BC=BD,求證:CD=DE;

(2)如圖,過點CCH⊥DE,垂足為H,若CD=BD,EH=1,求DE﹣BE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點A(3,6)、B(9,一3),以原點O為位似中心,相似比為,把ABO縮小,則點A的對應(yīng)點A的坐標(biāo)是

A.(1,2)

B.(9,18)

C.(9,18)或(9,18)

D.(1,2)或(1,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列方程:

(1)2x27x+3=0 (2)(x2)2=2x4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C為線段BD上一動點,分別過點B、DABBD,EDBD,連接ACEC.已知AB=2,DE=1,BD=8,設(shè)CD=x

1)用含x的代數(shù)式表示AC+CE的長;

2)請問點C滿足什么條件時,AC+CE的值最;

3)根據(jù)(2)中的規(guī)律和結(jié)論,請構(gòu)圖求出代數(shù)式的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點A(2,1)是正比例函數(shù)ykx(其中k0)和反比例函數(shù)y(其中t0)的圖像在第一象限的交點,點B是這兩個函數(shù)圖像的另一個交點,點Cx軸上一點.

1)求這兩個函數(shù)的解析式并直接寫出點B的坐標(biāo);

2)求當(dāng)ABC為等腰三角形時,C的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案