1.計(jì)算
(1)8+(-15)-(-9)+(-10)
(2)-22+|-7|-3-2×(-$\frac{1}{2}$)

分析 (1)原式利用減法法則變形,計(jì)算即可得到結(jié)果;
(2)原式先計(jì)算乘方及絕對(duì)值運(yùn)算,再計(jì)算乘法運(yùn)算,最后算加減運(yùn)算即可得到結(jié)果.

解答 解:(1)原式=8-15+9-10=17-25=-8;
(2)原式=-4+7-3+1=1.

點(diǎn)評(píng) 此題考查了有理數(shù)的混合運(yùn)算,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

11.計(jì)算sin245°+$\sqrt{8}$-sin60°•tan30°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

12.計(jì)算或解方程:
(1)($\frac{1}{2}$-$\sqrt{3}$)0|-4tan45°+6cos60°-|-5|
(2)x2-3x=5(x-3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

9.觀(guān)察下列各式:①$\sqrt{1+\frac{1}{3}}$=2$\sqrt{\frac{1}{3}}$,②$\sqrt{2+\frac{1}{4}}$=3$\sqrt{\frac{1}{4}}$;③$\sqrt{3+\frac{1}{5}}$=4$\sqrt{\frac{1}{5}}$,…
(1)請(qǐng)觀(guān)察規(guī)律,并寫(xiě)出第④個(gè)等式:$\sqrt{4+\frac{1}{6}}$=5$\sqrt{\frac{1}{6}}$;
(2)請(qǐng)用含n(n≥1)的式子寫(xiě)出你猜想的規(guī)律:$\sqrt{n+\frac{1}{n+2}}$=(n+1)$\sqrt{\frac{1}{n+2}}$;
(3)請(qǐng)證明(2)中的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

16.(1)解方程:x(x-2)+x-2=0
(2)如圖,在已建立直角坐標(biāo)系的4×4正方形方格紙中,△ABC是格點(diǎn)三角形(三角形的三個(gè)頂點(diǎn)都是小正方形的頂點(diǎn)),畫(huà)出一個(gè)以格點(diǎn)P、A、B為頂點(diǎn)的三角形與△ABC相似且不全等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

6.計(jì)算:sin30°cot260°+$\sqrt{2}$sin45°-°$\frac{tan45°}{\sqrt{3}tan60°}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,已知線(xiàn)段AB的長(zhǎng)為a,延長(zhǎng)線(xiàn)段AB至點(diǎn)C,使BC=$\frac{1}{2}$AB.
(1)求線(xiàn)段AC的長(zhǎng)(用含a的代數(shù)式表示);
(2)取線(xiàn)段AC的中點(diǎn)D,若DB=2,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,現(xiàn)有一幅書(shū)法作品(圖中陰影部分所示)需要裝裱,已知該書(shū)法作品的長(zhǎng)為50cm,寬為30cm,上、下邊襯等寬、左、右邊襯等寬,并且上、下邊襯的寬與左、右邊襯的寬比為1:2,已知裝裱后的作品的面積為2800cm2
(1)設(shè)上、下邊襯的寬為xcm,則左、右邊襯的寬為2xcm;
(2)求上、下邊襯的寬是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

15.按照如圖的程序計(jì)算,若輸入n的值為3時(shí),計(jì)算結(jié)果為231.

查看答案和解析>>

同步練習(xí)冊(cè)答案