【題目】如圖,AB為⊙O的直徑,BF切⊙O于點B,AF交⊙O于點D,點C在DF上,BC交⊙O于點E,且∠BAF=2∠CBF,CG⊥BF于點G,連接AE.
(1)直接寫出AE與BC的位置關(guān)系;
(2)求證:△BCG∽△ACE;
(3)若∠F=60°,GF=1,求⊙O的半徑長.

【答案】
(1)解:如圖1,

∵AB是⊙O的直徑,

∴∠AEB=90°.

∴AE⊥BC


(2)解:如圖1,

∵BF與⊙O相切,

∴∠ABF=90°.

∴∠CBF=90°﹣∠ABE=∠BAE.

∵∠BAF=2∠CBF.

∴∠BAF=2∠BAE.

∴∠BAE=∠CAE.

∴∠CBF=∠CAE.

∵CG⊥BF,AE⊥BC,

∴∠CGB=∠AEC=90°.

∵∠CBF=∠CAE,∠CGB=∠AEC,

∴△BCG∽△ACE


(3)解:連接BD,如圖2所示.

∵∠DAE=∠DBE,∠DAE=∠CBF,

∴∠DBE=∠CBF.

∵AB是⊙O的直徑,

∴∠ADB=90°.

∴BD⊥AF.

∵∠DBC=∠CBF,BD⊥AF,CG⊥BF,

∴CD=CG.

∵∠F=60°,GF=1,∠CGF=90°,

∴tan∠F= =CG=tan60°=

∵CG= ,

∴CD=

∵∠AFB=60°,∠ABF=90°,

∴∠BAF=30°.

∵∠ADB=90°,∠BAF=30°,

∴AB=2BD.

∵∠BAE=∠CAE,∠AEB=∠AEC,

∴∠ABE=∠ACE.

∴AB=AC.

設⊙O的半徑為r,則AC=AB=2r,BD=r.

∵∠ADB=90°,

∴AD= r.

∴DC=AC﹣AD=2r﹣ r=(2﹣ )r=

∴r=2 +3.

∴⊙O的半徑長為2 +3.


【解析】(1)由AB為⊙O的直徑即可得到AE與BC垂直.(2)易證∠CBF=∠BAE,再結(jié)合條件∠BAF=2∠CBF就可證到∠CBF=∠CAE,易證∠CGB=∠AEC,從而證到△BCG∽△ACE.(3)由∠F=60°,GF=1可求出CG= ;連接BD,容易證到∠DBC=∠CBF,根據(jù)角平分線的性質(zhì)可得DC=CG= ;設圓O的半徑為r,易證AC=AB,∠BAD=30°,從而得到AC=2r,AD= r,由DC=AC﹣AD= 可求出⊙O的半徑長.
【考點精析】利用角平分線的性質(zhì)定理和等腰三角形的判定對題目進行判斷即可得到答案,需要熟知定理1:在角的平分線上的點到這個角的兩邊的距離相等; 定理2:一個角的兩邊的距離相等的點,在這個角的平分線上;如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(簡稱:等角對等邊).這個判定定理常用于證明同一個三角形中的邊相等.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某學校準備開展“陽光體育活動”,決定開設以下體育活動項目:足球、乒乓球、籃球和羽毛球,要求每位學生必須且只能選擇一項,為了解選擇各種體育活動項目的學生人數(shù),隨機抽取了部分學生進行調(diào)查,并將通過調(diào)查獲得的數(shù)據(jù)進行整理,繪制出以下兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖回答問題:

(1)這次活動一共調(diào)查了名學生;
(2)補全條形統(tǒng)計圖;
(3)在扇形統(tǒng)計圖中,選擇籃球項目的人數(shù)所在扇形的圓心角等于度;
(4)若該學校有1500人,請你估計該學校選擇足球項目的學生人數(shù)約是人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P是四邊形ABCD外接圓上任意一點,且不與四邊形頂點重合,若AD是⊙O的直徑,AB=BC=CD.連接PA,PB,PC,若PA=a,則點A到PB和PC的距離之和AE+AF=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,BF切⊙O于點B,AF交⊙O于點D,點C在DF上,BC交⊙O于點E,且∠BAF=2∠CBF,CG⊥BF于點G,連接AE.
(1)直接寫出AE與BC的位置關(guān)系;
(2)求證:△BCG∽△ACE;
(3)若∠F=60°,GF=1,求⊙O的半徑長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算下列各題
(1)計算:(﹣1)2014﹣|﹣ |+ ﹣( ﹣π)0;
(2)先化簡,再求值:(2x﹣1)2﹣2(3﹣2x),其中x=﹣2.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在矩形ABCD中,AB10 cm,BC8 cm.P從點A出發(fā),沿A→B→C→D的路線運動,到點D停止;點Q從點D出發(fā),沿D→C→B→A的路線運動,到點A停止.若點P、點Q同時出發(fā),點P的速度為每秒1 cm,點Q的速度為每秒2 cm,a秒時,點P、點Q同時改變速度,點P的速度變?yōu)槊棵?/span>b cm,點Q的速度變?yōu)槊棵?/span>d cm.圖②是點P出發(fā)x秒后APD的面積S1(cm2)與時間x()的函數(shù)關(guān)系圖象;圖③是點Q出發(fā)x秒后AQD的面積S2(cm2)與時間x()的函數(shù)關(guān)系圖象

(1)參照圖②,求a、 b及圖②中c的值;

(2)d的值;

(3)設點P離開點A的路程為y1(cm),點Q到點A還需要走的路程為y2(cm),請分別寫出改變速度后,y1、y2與出發(fā)后的運動時間x()的函數(shù)關(guān)系式,并求出點P、點Q相遇時x的值;

(4)當點Q出發(fā)__ __秒時,點Q的運動路程為25 cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1) 如圖1,在一條筆直的公路兩側(cè),分別有A、B兩個村莊,現(xiàn)在要在公路l旁建一座火力發(fā)電廠,向A、B兩個村莊供電,為使所用的電線最短,請問供電廠P應健在何處?畫出圖形,不寫作法,保留作圖痕跡;

(2) 如圖2,若要向4個村莊A、B、C、D供電,供電廠P又該建在何處能使所用電線最短呢?畫出圖形,不寫作法,保留作圖痕跡;

(3)A、B、C、D如圖3,連接AC并延長到E,使CE=AC,連接BD并反向延長到F,不寫作法,保留作圖痕跡.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】亞健康是時下社會熱門話題,進行體育鍛煉是遠離亞健康的一種重要方式,為了解某校八年級學生每天進行體育鍛煉的時間情況,隨機抽樣調(diào)查了100名初中學生,根據(jù)調(diào)查結(jié)果得到如圖所示的統(tǒng)計圖表.

類別

時間t(小時)

人數(shù)

A

t0.5

5

B

0.5t1

20

C

1t1.5

a

D

1.5t2

30

E

t2

10

請根據(jù)圖表信息解答下列問題:

(1)a=   ;

(2)補全條形統(tǒng)計圖;

(3)小王說:我每天的鍛煉時間是調(diào)查所得數(shù)據(jù)的中位數(shù),問小王每天進行體育鍛煉的時間在什么范圍內(nèi)?

(4)若把每天進行體育鍛煉的時間在1小時以上定為鍛煉達標,則被抽查學生的達標率是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△AOB中,∠AOB=90°,OA=2,OB=1,將Rt△AOB繞點O順時針旋轉(zhuǎn)90°后得Rt△FOE,將線段EF繞點E逆時針旋轉(zhuǎn)90°后得線段ED,分別以O,E為圓心,OA、ED長為半徑畫弧AF和弧DF,連接AD,則圖中陰影部分面積是(
A.π
B.π+5
C.
D.

查看答案和解析>>

同步練習冊答案