【題目】已知菱形在平面直角坐標(biāo)系的位置如圖所示,,,,點(diǎn)是對(duì)角線上的一個(gè)動(dòng)點(diǎn),,當(dāng)周長(zhǎng)最小時(shí),點(diǎn)的坐標(biāo)為_____.
【答案】(3,2)
【解析】
點(diǎn)D關(guān)于AC的對(duì)稱點(diǎn)是點(diǎn)B,連接EB,交AC于點(diǎn)P,再得出EB即為EP+DP最短,解答即可.
連接ED,如圖,
∵點(diǎn)D關(guān)于AC的對(duì)稱點(diǎn)是點(diǎn)B,
∴DP=BP,
∴EB即為EP+DP最短,
即此時(shí)△EPD周長(zhǎng)最小,
連接BD交AC于M,
過M作MF⊥AB于F,
∵四邊形ABCD是菱形,
∴AM=AC=,AC⊥BD,
∴BM==,
∴MF==2,
∴AF==4,
∵A(1,1),B(6,1),
∴AB∥x軸,
∴直線AB與x軸間的距離是1,
∴M點(diǎn)的縱坐標(biāo)為2+1=3,
∴M(5,3),
∴直線AC的解析式為:,
∵E(0,3),B(6,1),
∴直線BE的解析式為:y=,
∴ ,
解得,,
∴點(diǎn)P的坐標(biāo)為(3,2).
故答案為:(3,2)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A是反比例函數(shù)y=圖象上一點(diǎn),過點(diǎn)A作x軸的平行線交反比例函數(shù)y=﹣的圖象于點(diǎn)B,點(diǎn)C在x軸上,且S△ABC=,則k=( 。
A. 6B. ﹣6C. D. ﹣
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A在反比例函數(shù)y=(x>0)圖象上,點(diǎn)B在反比例函數(shù)y=(k>0,x>0)的圖象上,AB∥x軸,BC∥y軸交x軸于點(diǎn)C,連結(jié)AC,交反比例函數(shù)y=(x>0)圖象于點(diǎn)D,若D為AC的中點(diǎn),則k的值是( 。
A. 2B. 3C. 4D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在趣味運(yùn)動(dòng)會(huì)“定點(diǎn)投籃”項(xiàng)目中,我校七年級(jí)八個(gè)班的投籃成績(jī)單位:個(gè)分別為:24,20,19,20,22,23,20,則這組數(shù)據(jù)中的眾數(shù)和中位數(shù)分別是
A. 22個(gè)、20個(gè) B. 22個(gè)、21個(gè) C. 20個(gè)、21個(gè) D. 20個(gè)、22個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線與相切于點(diǎn)T,直線與相交于兩點(diǎn),連接.
(1)求證:;
(2)若,請(qǐng)直接寫出圖中陰影部分的面積(結(jié)果保留無(wú)理數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線過點(diǎn),與軸交于點(diǎn),,交y軸于點(diǎn),頂點(diǎn)為.
(1)求拋物線解析式;
(2)在第一象限內(nèi)的拋物線上求點(diǎn),使 ,求點(diǎn)的坐標(biāo);
(3)是第一象限內(nèi)拋物線上一點(diǎn),是線段上一點(diǎn),點(diǎn) 在點(diǎn)右側(cè),且滿足,當(dāng)為何值時(shí),滿足條件的點(diǎn)只有一個(gè)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是等腰三角形,AB=AC,點(diǎn)D是AB上一點(diǎn),過點(diǎn)D作DE⊥BC交BC于點(diǎn)E,交CA延長(zhǎng)線于點(diǎn)F.
(1)證明:△ADF是等腰三角形;
(2)若∠B=60°,BD=4,AD=2,求EC的長(zhǎng),
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)P(x0,y0)到直線Ax+By+C=0(A2+B2≠0)的距離公式為:d=,
例如,求點(diǎn)P(1,3)到直線4x+3y﹣3=0的距離.
解:由直線4x+3y﹣3=0知:A=4,B=3,C=﹣3
所以P(1,3)到直線4x+3y﹣3=0的距離為:d==2
根據(jù)以上材料,解決下列問題:
(1)求點(diǎn)P1(1,-1)到直線3x﹣4y﹣5=0的距離.
(2)已知:⊙C是以點(diǎn)C(2,1)為圓心,1為半徑的圓,⊙C與直線y=﹣x+b相切,求實(shí)數(shù)b的值;
(3)如圖,設(shè)點(diǎn)P為問題2中⊙C上的任意一點(diǎn),點(diǎn)A,B為直線3x+4y+5=0上的兩點(diǎn),且AB=2,請(qǐng)求出△ABP面積的最大值和最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖拋物線y=ax2+bx+c的對(duì)稱軸為直線x=1,且過點(diǎn)(3,0),下列結(jié)論:①abc>0;②a﹣b+c<0;③2a+b>0;④b2﹣4ac>0;正確的有( )個(gè).
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com