【題目】如圖,直線與相切于點T,直線與相交于兩點,連接.
(1)求證:;
(2)若,請直接寫出圖中陰影部分的面積(結(jié)果保留無理數(shù))
【答案】(1)見解析;(2)
【解析】
(1)利用切線的性質(zhì)得∠OTP=90°,即∠2+∠PTA=90°,再利用圓周角定理得到∠ATB=90°,則∠2+∠1=90°,然后利用等量代換得到∠PTA=∠B;
(2)利用TP=TB得到∠P=∠B,而∠POT=2∠B,所以∠POT=2∠P,則利用∠OTP=90°可計算出∠P=30°,∠POT=60°,利用含30度的直角三角形三邊的關系得到OT=6,△AOT為等邊三角形,然后根據(jù)扇形的面積公式和圖中陰影部分的面積=S扇形AOT-S△AOT進行計算.
(1)證明:∵直線PT與⊙O相切于點T,
∴OT⊥PT,
∴∠OTP=90°,
即∠2+∠PTA=90°,
∵AB為直徑,
∴∠ATB=90°,
∴∠2+∠1=90°,
∴∠PTA=∠1,
∵OB=OT,
∴∠1=∠B,
∴∠PTA=∠B;
(2)解:∵PT=BT,
∴∠P=∠B,
∵∠POT=∠B+∠1=2∠B,
∴∠POT=2∠P,
而∠OTP=90°,
∴∠P=30°,∠POT=60°,
∴OT=PT=6,△AOT為等邊三角形,
∴圖中陰影部分的面積=S扇形AOT-S△AOT=-=6π-9.
科目:初中數(shù)學 來源: 題型:
【題目】有大小兩種貨車,3輛大貨車與4輛小貨車一次可以運貨18噸,2輛大貨車與6輛小貨車一次可以運貨17噸.
(1)請問1輛大貨車和1輛小貨車一次可以分別運貨多少噸?
(2)目前有33噸貨物需要運輸,貨運公司擬安排大小貨車共計10輛,全部貨物一次運完,其中每輛大貨車一次運費花費130元,每輛小貨車一次運貨花費100元,請問貨運公司應如何安排車輛最節(jié)省費用?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O為等腰△ABC的外接圓,直徑AB=12,P為上任意一點(不與B,C重合),直線CP交AB延長線于點Q,⊙O在點P處切線PD交BQ于點D,下列結(jié)論:①若∠PAB=30°,則的長為π;②若PD∥BC,則AP平分∠CAB;③若PB=BD,則PD=6;④無論點P在上的位置如何變化,CPCQ為定值.其中正確的是________________.(寫出所有正確結(jié)論的序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,△ABC內(nèi)接于⊙O,AB為直徑,∠CBA的平分線交AC于點F,交⊙O于點D,DE⊥AB于點E,且交AC于點P,連結(jié)AD.
(1)求證:∠DAC=∠DBA;
(2)求證:P是線段AF的中點;
(3)連接CD,若CD﹦3,BD﹦4,求⊙O的半徑和DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,則下列4個結(jié)論:①abc<0;②2a+b=0;③4a+2b+c>0;④b2﹣4ac>0;其中正確的結(jié)論的個數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以Rt△ABC的AC邊為直徑作⊙O交斜邊AB于點E,連接EO并延長交BC的延長線于點D,點P為BC的中點,連接EP,AD.
(1)求證:PE是⊙O的切線;
(2)若⊙O的半徑為3,∠B=30°,求P點到直線AD的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在⊙O的內(nèi)接三角形ABC中,,,過C作AB的垂線l交⊙O于另一點D,垂足為E.設P是上異于A,C的一個動點,射線AP交l于點F,連接PC與PD,PD交AB于點G.
(1)求證:;
(2)若, ,求PD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com