【題目】(問題情境)
課外興趣小組活動時,老師提出了如下問題:如圖1,△ABC中,若AB=12,AC=8,求BC邊上的中線AD的取值范圍.
小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:延長AD到E,使DE=AD,連接BE.請根據(jù)小明的方法思考:
(1)由已知和作圖能得到△ADC≌△EDB,依據(jù)是 .
A.SSS B.SAS C.AAS D.HL
(2)由“三角形的三邊關(guān)系”可求得AD的取值范圍是 .
解后反思:題目中出現(xiàn)“中點(diǎn)”“中線”等條件,可考慮延長中線構(gòu)造全等三角形,把分散的已知條件和所求證的結(jié)論集合到同一個三角形中.
(初步運(yùn)用)
如圖2,AD是△ABC的中線,BE交AC于E,交AD于F,且AE=EF.若EF=3,EC=2,求線段BF的長.
(靈活運(yùn)用)
如圖3,在△ABC中,∠A=90°,D為BC中點(diǎn),DE⊥DF,DE交AB于點(diǎn)E,DF交AC于點(diǎn)F,連接EF,試猜想線段BE、CF、EF三者之間的等量關(guān)系,并證明你的結(jié)論.
【答案】(1)B;(2)2<AD<10;【初步運(yùn)用】BF=5;【靈活運(yùn)用】BE2+CF2=EF2,理由見解析
【解析】
(1)根據(jù)全等三角形的判定定理解答;
(2)根據(jù)三角形的三邊關(guān)系計(jì)算;
初步運(yùn)用 延長AD到M,使AD=DM,連接BM,證明△ADC≌△MDB,根據(jù)全等三角形的性質(zhì)解答;
靈活運(yùn)用 延長ED到點(diǎn)G,使DG=ED,連結(jié)GF,GC,證明△DBE≌△DCG,得到BE=CG,根據(jù)勾股定理解答.
解:(1)在△ADC和△EDB中,
,
∴△ADC≌△EDB(SAS),
故選:B;
(2)∵△ADC≌△EDB,
∴EB=AC=8,
在△ABE中,
AB﹣BE<AE<AB+BE,
∴2<AD<10,
故答案為:2<AD<10;
【初步運(yùn)用】
延長AD到M,使AD=DM,連接BM,
∵AE=EF.EF=3,
∴AC=5,
∵AD是△ABC中線,
∴CD=BD,
∵在△ADC和△MDB中,
,
∴△ADC≌△MDB,
∴BM=AC,∠CAD=∠M,
∵AE=EF,
∴∠CAD=∠AFE,
∵∠AFE=∠BFD,
∴∠BFD=∠CAD=∠M,
∴BF=BM=AC,
即BF=5;
【靈活運(yùn)用】
線段BE、CF、EF之間的等量關(guān)系為:BE2+CF2=EF2.
證明:如圖3,延長ED到點(diǎn)G,使DG=ED,連結(jié)GF,GC,
∵ED⊥DF,
∴EF=GF,
∵D是BC的中點(diǎn),
∴BD=CD,
在△BDE和△CDG中,
,
∴△BDE≌△CDG(SAS),
∴BE=CG,
∵∠A=90°,
∴∠B+∠ACB=90°,
∵△BDE≌△CDG,EF=GF,
∴BE=CG,∠B=∠GCD,
∴∠GCD+∠ACB=90°,即∠GCF=90°,
∴Rt△CFG中,CF2+GC2=GF2,
∴BE2+CF2=EF2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】古希臘著名的畢達(dá)哥拉斯學(xué)派把1,3,6,10…這樣的數(shù)稱為“三角形數(shù)”,而把1,4,9,16…這樣的數(shù)稱為“正方形數(shù)”.從圖中可以發(fā)現(xiàn),任何一個大于1的“正方形數(shù)”都可以看作兩個相鄰“三角形數(shù)”之和.下列等式中,符合這一規(guī)律的是( 。
A.13=3+10B.25=9+16C.36=15+21D.49=18+31
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場為了吸引顧客,設(shè)計(jì)了一種促銷活動:在一個不透明的箱子里放有4個相同的小球,球上分別標(biāo)有“0元”、“10元”、“20元”和“30元”的字樣.規(guī)定:顧客在本商場同一日內(nèi),每消費(fèi)滿200元,就可以在箱子里先后摸出兩個球(第一次摸出后不放回),商場根據(jù)兩小球所標(biāo)金額的和返還相應(yīng)價格的購物券,可以重新在本商場消費(fèi),某顧客剛好消費(fèi)200元.
(1)該顧客至少可得到_____元購物券,至多可得到_______元購物券;
(2)請你用畫樹狀圖或列表的方法,求出該顧客所獲得購物券的金額不低于30元的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,,點(diǎn),分別在直線,上,,過點(diǎn)作的延長線交于點(diǎn),交于點(diǎn),平分,交于點(diǎn),交于點(diǎn).
(1)直接寫出,,之間的關(guān)系:
___________=____________+___________
(2)若,求.
(3)如圖2,在(2)的條件下,將繞著點(diǎn)以每秒的速度逆時針旋轉(zhuǎn),旋轉(zhuǎn)時間為,當(dāng)邊與射線重合時停止,則在旋轉(zhuǎn)過程中,當(dāng)的其中一邊與的某一邊平行時,直接寫出此時的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c的圖象經(jīng)過點(diǎn)A(﹣2,0),點(diǎn)B(4,0),點(diǎn)D(2,4),與y軸交于點(diǎn)C,作直線BC,連接AC、CD.
(1)求拋物線的函數(shù)表達(dá)式;
(2)E是拋物線上的點(diǎn),求滿足∠ECD=∠ACO的點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為準(zhǔn)備母親節(jié)禮物,同學(xué)們委托小明用其支付寶余額團(tuán)購鮮花或禮盒.每束鮮花的售價相同,每份禮盒的售價也相同.若團(tuán)購15束鮮花和18份禮盒,余額差80元;若團(tuán)購18束鮮花和15份禮盒,余額剩70元.若團(tuán)購19束鮮花和14份禮盒,則支付寶余額剩_______元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y=的圖象與一次函數(shù)y=kx+b的圖象交于點(diǎn)A(m,2),點(diǎn)B(﹣2,n ),一次函數(shù)圖象與y軸的交點(diǎn)為C.
(1)求一次函數(shù)解析式;
(2)求C點(diǎn)的坐標(biāo);
(3)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線l經(jīng)過點(diǎn)A,BD⊥直線l,CE⊥直線l,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.
(2)如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線l上,且∠BDA=∠AEC=∠BAC=α,其中α為任意銳角或鈍角.請問結(jié)論DE=BD+CE是否成立?如成立;請你給出證明;若不成立,請說明理由.
(3)拓展與應(yīng)用:如圖(3),D、E是直線l上的兩動點(diǎn)(D、A、E三點(diǎn)互不重合),點(diǎn)F為∠BAC平分線上的一點(diǎn),且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,求證:DF=EF.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com