如圖,矩形ABCD中,AB=16cm,AD=4cm,點P、Q分別從A、B同時出發(fā),點P在邊AB上沿AB方向以2cm/s的速度勻速運動,點Q在邊BC上沿BC方向以1cm/s的速度勻速運動,當(dāng)其中一點到達(dá)終點時,另一點也隨之停止運動.設(shè)運動時間為x秒,△PBQ的面積為y(cm2).
(1)求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)求△PBQ的面積的最大值.
(1)y=-x2+8x,自變量取值范圍:0<x≤4;
(2)△PBQ的面積的最大值為16cm2.
解析試題分析:(1)根據(jù)矩形的對邊相等表示出BC,然后表示出PB、QB,再根據(jù)三角形的面積列式整理即可得解,根據(jù)點Q先到達(dá)終點確定出x的取值范圍即可;
(2)利用二次函數(shù)的最值問題解答.
試題解析:(1)∵四邊形ABCD是矩形,
∴BC=AD=4,
根據(jù)題意,AP=2x,BQ=x,
∴PB=16-2x,
∵S△PBQ=,
∴y=-x2+8x
自變量取值范圍:0<x≤4;
(2)當(dāng)x=4時,y有最大值,最大值為16
∴△PBQ的面積的最大值為16cm2.
考點:二次函數(shù)的最值.
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)y=x2-2x-3的圖象與x軸交于A、B兩點(A在B的左側(cè)),與y軸交于點C,頂點為D.
(1)求點A、B、C、D的坐標(biāo),并在下面直角坐標(biāo)系中畫出該二次函數(shù)的大致圖象;
(2)說出拋物線y=x2-2x-3可由拋物線y=x2如何平移得到?
(3)求四邊形OCDB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,用長為6m的鋁合金條制成“日”字形窗框,若窗框的寬為xm,窗戶的透光面積為ym2(鋁合金條的寬度不計).
(1)求出y與x的函數(shù)關(guān)系式;
(2)如何安排窗框的長和寬,才能使得窗戶的透光面積最大?并求出此時的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖(1)是某河上一座古拱橋的截面圖,拱橋橋洞上沿是拋物線形狀,拋物線兩端點與水面的距離都是1m,拱橋的跨度為10m,橋洞與水面的最大距離是5m,橋洞兩側(cè)壁上各有一盞距離水面4m的景觀燈.現(xiàn)把拱橋的截面圖放在平面直角坐標(biāo)系中,如圖(2).
求(1)拋物線的解析式;
(2)兩盞景觀燈P1、P2之間的水平距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
二次函數(shù)y=ax²-6ax+c(a>0)的圖像拋物線過點C(0,4),設(shè)拋物線的頂點為D。
(1)若拋物線經(jīng)過點(1,-6),求二次函數(shù)的解析式;
(2)若a=1時,試判斷拋物線與x軸交點的個數(shù);
(3)如圖所示A、B是⊙P上兩點,AB=8,AP=5。且拋物線過點A(x1,y1),B(x2,y2),并有AD=BD。設(shè)⊙P上一動點E(不與A、B重合),且∠AEB為銳角,若<a≤1時,請判斷∠AEB與∠ADB的大小關(guān)系,并說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
今年,在端午節(jié)前夕,三位同學(xué)到某超市調(diào)研一種進(jìn)價為2元的粽子的銷售情況.(售價不低于進(jìn)價).請根據(jù)小麗提供的信息,解答小華和小明提出的問題.
認(rèn)真閱讀上面三位同學(xué)的對話,請根據(jù)小麗提供的信息.
(1)解答小華的問題;
(2)解答小明的問題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知:二次函數(shù)的圖象開口向上,并且經(jīng)過原點.
(1)求的值;
(2)用配方法求出這個二次函數(shù)圖象的頂點坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知:拋物線與x軸的兩個交點分別為A(1,0)和B(3,0),與y軸交于點C.
(1)求此二次函數(shù)的解析式;
(2)寫出點C的坐標(biāo)________,頂點D的坐標(biāo)為__________;
(3)將直線CD沿y軸向下平移3個單位長度,求平移后直線m的解析式;
(4)在直線m上是否存在一點E,使得以點E、A、B、C為頂點的四邊形是梯形,如果存在,請直接寫出所有滿足條件的E點的坐標(biāo)__________________________________(不必寫出過程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
某商場購進(jìn)一種單價為40元的籃球,如果以單價50元售出,那么每月可售出500個,根據(jù)銷售經(jīng)驗,銷售單價每提高1元,銷售量相應(yīng)減少10個.
(1)設(shè)銷售單價提高x元(x為正整數(shù)),寫出每月銷售量y(個)與x(元)之間的函數(shù)關(guān)系式;
(2)假設(shè)這種籃球每月的銷售利潤為w元,試寫出w與x之間的函數(shù)關(guān)系式,并通過配方討論,當(dāng)銷售單價定為多少元時,每月銷售這種籃球的利潤最大,最大利潤為多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com