【題目】尺規(guī)作圖(保留作圖痕跡,不要求寫作法)

1)如圖,在一次軍事演習中,紅方偵察員發(fā)現(xiàn)藍方指揮部在A區(qū)內(nèi),到鐵路與到公路的距離相等,且離鐵路與公路交叉處B600米,如果你是紅方的指揮員,請你在圖1所示的作戰(zhàn)圖上標出藍方指揮部的位置。

2).已知四邊形ABCD,如果點AD關于直線MN對稱,

1)畫出對稱軸MN;

2)畫出四邊形ABCD關于直線MN的對稱圖形.

【答案】1)答案見解析;(2)答案見解析.

【解析】

1)根據(jù)角平分線的性質(zhì),到角的兩邊相等的點在這個角的角平分線上作圖即可;

(2)1)根據(jù)軸對稱的性質(zhì),作出CD的垂直平分線,即為所求作的直線MN;2)先找出點A、B關于直線MN的對稱點A′B′,然后與CD順次連接即可.

解:(1)在兩條路所夾角的平分線上,由比例尺算出到B點的距離為3cm

C即為所求.

2)如圖,1)直線MN即為所求;

2)四邊形A′B′DC即為四邊形ABDC關于直線MN的對稱圖形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,銳角中,,若想找一點P,使得互補,甲、乙、丙三人作法分別如下:

甲:以B為圓心,AB長為半徑畫弧交ACP點,則P即為所求;

乙:分別以B,C為圓心,AB,AC長為半徑畫弧交于P點,則P即為所求;

丙:作BC的垂直平分線和的平分線,兩線交于P點,則P即為所求.

對于甲、乙、丙三人的作法,下列敘述正確的是  

A. 三人皆正確B. 甲、丙正確,乙錯誤

C. 甲正確,乙、丙錯誤D. 甲錯誤,乙、丙正確

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】探索與發(fā)現(xiàn)

探索:如圖,在直角坐標系中,正方形ABCO的點B坐標(4,4),點AC分別在y軸、x軸上,對角線AC上一動點E,連接BE,過EDEBEOC于點D

1)證明:BEDE

小明給出的思路為:過Ey軸的平行線交AB、x軸于點F、H.請完善小明的證明過程.

2)若點D坐標為(3,0),則點E坐標為   

若點D坐標為(a,0),則點E坐標為   

發(fā)現(xiàn):在直角坐標系中,點B坐標(5,3),點D坐標(3,0),找一點E,使得△BDE為等腰直角三角形,直接寫出點E坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】作圖題:

如圖,在10×10的正方形網(wǎng)格中,每個小正方形的邊長都為1,網(wǎng)格中有一個格點ABC(即三角形的頂點都在格點上).

1)在圖中畫出ABC關于直線l對稱的A1B1C1;

(要求:AA1,BB1,CC1相對應)

2)求出A1B1C1面積.

3)在直線l上找一點P,使得PA+PB的值最小.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一條拋物線的開口大小與方向、對稱軸均與拋物線y=x2相同,并且拋物線經(jīng)過點(1,1).

(1)求拋物線的解析式,并指明其頂點;

(2)所求拋物線如何由拋物線y=x2平移得到?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知對稱軸為y軸的拋物線y=ax2+bx+3,與x軸兩個交點的橫坐標分別為x1,x2.若點(x1,x2)在反比例函數(shù)y=的圖象上,該拋物線與x軸圍成封閉區(qū)域(邊界除外)內(nèi)整點(點的橫、縱坐標都是整數(shù))的個數(shù)為k,則反比例函數(shù)y=(x>0)的圖象是(  )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在半⊙O中,AB是直徑,點D⊙O上一點,點C的中點,CE⊥AB于點E,過點D的切線交EC的延長線于點G,連接AD,分別交CE,CB于點P,Q,連接AC,關于下列結論:①∠BAD=∠ABC;②GP=GD;③P△ACQ的外心;④AC2=CQCB,其中結論正確的是____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明調(diào)查了班級里20位同學本學期購買課外書的花費情況,并將結果繪制成了如圖的統(tǒng)計圖.在這20位同學中,本學期購買課外書的花費的眾數(shù)和中位數(shù)分別是( 。

A. 50,50 B. 50,30 C. 80,50 D. 30,50

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:已知在△ABC中,AB=AC,DBC邊的中點,過點DDEAB,DFAC,垂足分別為E,F(xiàn).

(1)求證:DE=DF;

(2)若∠A=60°,BE=1,求△ABC的周長.

查看答案和解析>>

同步練習冊答案