【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)的圖像交于A(2,4),B(-4,n)兩點,交x軸于點C.

(1)m、n的值;

(2)請直接寫出不等式kx+b<的解集;

(3)x軸下方的圖像沿x軸翻折,點B落在點B′處,連接AB′、B′C,求△A B′C的面積.

【答案】(1)m=8,n=-2 ;(2)x<-4或0<x<2 ;(3)8

【解析】(1)先求出,再把B(-4,n)代入得;(2)結(jié)合圖形求解;(3)用待定系數(shù)法求直線解析式,再求C的坐標,同時求B的坐標,根據(jù)坐標求三角形面積.

:(1)把A(2,4)代入,得,解得m=8,

所以,,把B(-4,n)代入得,解得n=-2,

(2)由圖形可知不等式kx+b<的解集:x<-4或0<x<2;

(3)

A(2,4),B(-4,-2)分別代入y=kx+b,得

解得

,

所以,

y=0時,x=-2

所以,C(-2,0)

AEx軸,連接BBx軸交F

由已知得B(-4,2),

所以,△A B′C的面積=S梯形AEFB-S B′FC-SACE

=

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角∠O的內(nèi)部有一滑動桿AB,當端點A沿直線AO向下滑動時,端點B會隨之自動地沿直線OB向左滑動,如果滑動桿從圖中AB處滑動到A′B′處,那么滑動桿的中點C所經(jīng)過的路徑是(
A.直線的一部分
B.圓的一部分
C.雙曲線的一部分
D.拋物線的一部分

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c與x軸的一個交點為A(3,0),與y軸的交點為B(0,3),其頂點為C,對稱軸為x=1.

(1)求拋物線的解析式;
(2)已知點M為y軸上的一個動點,當△ABM為等腰三角形時,求點M的坐標;
(3)將△AOB沿x軸向右平移m個單位長度(0<m<3)得到另一個三角形,將所得的三角形與△ABC重疊部分的面積記為S,用m的代數(shù)式表示S.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖甲,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm.如果點P由點B出發(fā)沿BA方向向點A勻速運動,同時點Q由點A出發(fā)沿AC方向向點C勻速運動,它們的速度均為1cm/s.連接PQ,設(shè)運動時間為t(s)(0<t<4),解答下列問題:

(1)設(shè)△APQ的面積為S,當t為何值時,S取得最大值?S的最大值是多少?
(2)如圖乙,連接PC,將△PQC沿QC翻折,得到四邊形PQP′C,當四邊形PQP′C為菱形時,求t的值;′
(3)當t為何值時,△APQ是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】李先生參加了某電腦公司推出的分期付款購買電腦活動,他購買的電腦價格為1.2萬元,交了首付4000元之后每期付款y元,x個月結(jié)清余款.

(1)寫出yx的函數(shù)關(guān)系式.

(2)如打算每月付款不超過500元,李先生至少幾個月才能結(jié)清余款?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】□ABCD中,E、F是對角線BD上不同的兩點,下列條件中,不能得出四邊形AECF一定為平行四邊形的是(

A. BE=DF B. AE=CF C. AF//CE D. BAE=DCF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀理解:

A、B、C為數(shù)軸上三點,若點CA的距離是點CB的距離2倍,我們就稱點C是(A,B)的妙點.

例如,如圖1,點A表示的數(shù)為﹣1,點B表示的數(shù)為2.表示1的點C到點A的距離是2,到點B的距離是1,那么點C是(A,B)的妙點;又如,表示0的點D到點A的距離是1,到點B的距離是2,那么點D就不是(A,B)的妙點,但點D是(B,A)的妙點.

知識運用:如圖2,M、N為數(shù)軸上兩點,點M所表示的數(shù)為﹣2,點N所表示的數(shù)為4.

(1)數(shù)   所表示的點是(M,N)的妙點;

(2)如圖3,A、B為數(shù)軸上兩點,點A所表示的數(shù)為﹣40,點B所表示的數(shù)為20.現(xiàn)有一只電子螞蟻P從點B出發(fā)向左運動,到達點A停止.P點運動多少個單位時,P、AB中恰有一個點為其余兩點的妙點?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,四邊形ABCD和四邊形AECF都是矩形,AE與BC交于點M,CF與AD交于點N.

(1)求證:△ABM≌△CDN;
(2)矩形ABCD和矩形AECF滿足何種關(guān)系時,四邊形AMCN是菱形,證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩家超市進行促銷活動,甲超市采用“買100減50”的促銷方式,即購買商品的總金額滿100元但不足200元,少付50元;滿200元但不足300元,少付100元;….乙超市采用“打6折”的促銷方式,即顧客購買商品的總金額打6折.
(1)若顧客在甲商場購買商品的總金額為x(100≤x<200)元,優(yōu)惠后得到商家的優(yōu)惠率為p(p= ),寫出p與x之間的函數(shù)關(guān)系式,并說明p隨x的變化情況;
(2)王強同學認為:如果顧客購買商品的總金額超過100元,實際上甲超市采用“打5折”、乙超市采用“打6折”,那么當然選擇甲超市購物.請你舉例反駁;
(3)品牌、質(zhì)量、規(guī)格等都相同的某種商品,在甲乙兩商場的標價都是x(300≤x<400)元,認為選擇哪家商場購買商品花錢較少?請說明理由.

查看答案和解析>>

同步練習冊答案