【題目】5月13日,周杰倫2017“地表最強(qiáng)”世界巡回演唱會在奧體中心盛大舉行,1號巡邏員從舞臺走往看臺,2號巡邏號從看臺走往舞臺,兩人同時(shí)出發(fā),分別以各自的速度在舞臺與看臺間勻速走動(dòng),出發(fā)1分鐘后,1號巡邏員發(fā)現(xiàn)對講機(jī)遺忘在出發(fā)地,便立即返回出發(fā)地,拿到對講機(jī)后(取對講機(jī)時(shí)間不計(jì))立即再從舞臺走往看臺,結(jié)果1號巡邏員先到達(dá)看臺,2號巡邏員繼續(xù)走到舞臺,設(shè)2號巡邏員的行駛時(shí)間為x(min),兩人之間的距離為y(m),y與x的函數(shù)圖象如圖所示,則當(dāng)1號巡邏員到達(dá)看臺時(shí),2號巡邏員離舞臺的距離是________米.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先化簡,再求值:
①(x+1)(x﹣1)﹣(x﹣2)2,其中x=.
②[(x+y)2﹣y(2x+y)﹣8xy]÷2x,其中x=2,.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=kx+b的圖象經(jīng)過點(diǎn)(0,2)和點(diǎn)(1,﹣1).
(1)求這個(gè)一次函數(shù)的解析式;
(2)求此一次函數(shù)圖象與兩坐標(biāo)軸所圍成的三角形面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中每個(gè)小方格都是邊長為1的正方形,已知學(xué)校的坐標(biāo)為A(2,2).
(1)請?jiān)趫D中建立適當(dāng)?shù)闹苯亲鴺?biāo)系,并寫出圖書館的坐標(biāo);
(2)若體育館的坐標(biāo)為C(-2,3),請?jiān)谧鴺?biāo)系中標(biāo)出體育館的位置,并順次連接學(xué)校、圖書館、體育館,得到△ABC,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等邊三角形OAB的頂點(diǎn)O(0,0),A(0,6),將該三角形繞點(diǎn)O順時(shí)針旋轉(zhuǎn),每次旋轉(zhuǎn)60°,則旋轉(zhuǎn)2017次后,頂點(diǎn)B的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知直線AB和CD相交于點(diǎn)O,OM平分∠BOD,∠MON=90°,∠AOC=50°.
(1)求∠AON的度數(shù).
(2)寫出∠DON的余角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市數(shù)學(xué)調(diào)研小組對老師在講評試卷中學(xué)生參與的深度與廣度進(jìn)行評價(jià)調(diào)查,其評價(jià)項(xiàng)目為“主動(dòng)質(zhì)疑”、“獨(dú)立思考”、“專注聽講”、“講解題目”四項(xiàng),該調(diào)研小組隨機(jī)抽取了若干名初中七年級學(xué)生的參與情況,繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計(jì)圖(均不完整),請根據(jù)圖中所給信息答下列問題:
(1)在這次評價(jià)中,一共抽查了 名學(xué)生;
(2)請將頻數(shù)分布直方圖補(bǔ)充完整;
(3)如果全市有4000名七年級學(xué)生,那么在試卷評講課中,“獨(dú)立思考”的七年級學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,E,F是對角線BD上的兩點(diǎn),如果添加一個(gè)條件使△ABE≌△CDF,則添加的條件不能是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請將下列證明過程補(bǔ)充完整:
已知:如圖,AE平分∠BAC,CE平分∠ACD,且∠α+∠β=90°.
求證:AB∥CD.
證明:∵CE平分∠ACD (已知),
∴∠ACD=2∠α(______________________)
∵AE平分∠BAC (已知),
∴∠BAC=_________(______________________)
∵∠α+∠β=90°(已知),
∴2∠α+2∠β=180°(等式的性質(zhì))
∴∠ACD+∠BAC==_________(______________________)
∴AB∥CD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com