【題目】目前節(jié)能燈在城市已基本普及,今年山東省面向縣級(jí)及農(nóng)村地區(qū)推廣,為響應(yīng)號(hào)召,某商場(chǎng)計(jì)劃購(gòu)進(jìn)甲,乙兩種節(jié)能燈共只,這兩種節(jié)能燈的進(jìn)價(jià)、售價(jià)如下表:

進(jìn)價(jià)(元/只)

售價(jià)(元/只)

甲型

乙型

(1)如何進(jìn)貨,進(jìn)貨款恰好為?

(2)設(shè)商場(chǎng)購(gòu)進(jìn)甲種節(jié)能燈只,求出商場(chǎng)銷售完節(jié)能燈時(shí)總利潤(rùn)與購(gòu)進(jìn)甲種節(jié)能燈之間的函數(shù)關(guān)系式;

(3)如何進(jìn)貨,商場(chǎng)銷售完節(jié)能燈時(shí)獲利最多且不超過進(jìn)貨價(jià)的,此時(shí)利潤(rùn)為多少元?

【答案】1)乙型節(jié)能燈為800 2; 3)購(gòu)進(jìn)乙型節(jié)能燈只時(shí)的最大利潤(rùn)為.

【解析】

(1)設(shè)商場(chǎng)購(gòu)進(jìn)甲型節(jié)能燈x,則購(gòu)進(jìn)乙型節(jié)能燈(1200x)只,根據(jù)兩種節(jié)能燈的總價(jià)為46000元建立方程求出其解即可;

(2)設(shè)商場(chǎng)應(yīng)購(gòu)進(jìn)甲開型節(jié)能燈x只,根據(jù)題意列出函數(shù)解析式即可;

(3)根據(jù)(2)的結(jié)論解答即可.

1)設(shè)商場(chǎng)應(yīng)購(gòu)進(jìn)甲型節(jié)能燈只,則乙型節(jié)能燈為只.

根據(jù)題意得,,

解得

所以乙型節(jié)能燈為:;

2)設(shè)商場(chǎng)應(yīng)購(gòu)進(jìn)甲型節(jié)能燈只,商場(chǎng)銷售完這批節(jié)能燈可獲利元.

根據(jù)題意得,

;

3商場(chǎng)銷售完節(jié)能燈時(shí)獲利最多且不超過進(jìn)貨價(jià)的,

,

,

的增大而減小,

時(shí),最大元.

商場(chǎng)購(gòu)進(jìn)甲型節(jié)能燈只,

購(gòu)進(jìn)乙型節(jié)能燈只時(shí)的最大利潤(rùn)為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知平行四邊形ABCD,過A點(diǎn)作AMBCM,交BDE,過C點(diǎn)作CNADN,交BDF,連接AF、CE.

(1)求證:四邊形AECF為平行四邊形;

(2)當(dāng)AECF為菱形,M點(diǎn)為BC的中點(diǎn)時(shí),求AB:AE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,E、F分別是邊AB、CD上的點(diǎn),AE=CF,連接EF,BFEF與對(duì)角線AC交于O點(diǎn),且BE=BF,∠BEF=2∠BAC。

1)求證:OE=OF;

2)若BC=,求AB的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】八年級(jí)6班的一個(gè)互助學(xué)習(xí)小組組長(zhǎng)收集并整理了組員們討論如下問題時(shí)所需的條件:如圖所示,在四邊形ABCD中,點(diǎn)E、F分別在邊BC、AD上,____,求證:四邊形AECF是平行四邊形. 你能在橫線上填上最少且簡(jiǎn)捷的條件使結(jié)論成立嗎?

條件分別是:①BEDF;②∠B=∠D;③BAE=∠DCF;④四邊形ABCD是平行四邊形.

其中AB、C、D四位同學(xué)所填條件符合題目要求的是( 。

A. ①②③④B. ①②③C. ①④D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)O為直線AB上一點(diǎn),過點(diǎn)O作射線OC,使BOC=65°,將一直角三角板的直角頂點(diǎn)放在點(diǎn)O處.

(1)如圖①,將三角板MON的一邊ON與射線OB重合時(shí),則MOC= ;

(2)如圖②,將三角板MON繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)一定角度,此時(shí)OC是MOB的角平分線,求旋轉(zhuǎn)角BONCON的度數(shù);

(3)將三角板MON繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)至圖③時(shí),NOC=AOM,求NOB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A(1,0),B(0,3),將RtAOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得到RtCODCD的延長(zhǎng)線,交AB于點(diǎn)E,連接BC,二次函數(shù)的圖象過點(diǎn)AB、C.

(1)求二次函數(shù)的解析式;

(2)點(diǎn)P是線段BC上方拋物線上的一個(gè)動(dòng)點(diǎn),當(dāng)∠PBC=75°時(shí),求點(diǎn)P的坐標(biāo);

(3)設(shè)拋物線的對(duì)稱軸與x軸交于點(diǎn)F,在拋物線的對(duì)稱軸上,是否存在一點(diǎn)Q,使得以點(diǎn)Q、O、F為頂點(diǎn)的三角形,與BDE相似?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù) yl= x ( x 0 ) , x > 0 )的圖象如圖所示,則結(jié)論: 兩函數(shù)圖象的交點(diǎn)A的坐標(biāo)為(3 ,3 ) 當(dāng) x > 3 時(shí), 當(dāng) x 1時(shí), BC = 8

當(dāng) x 逐漸增大時(shí), yl 隨著 x 的增大而增大,y2隨著 x 的增大而減。渲姓_結(jié)論的序號(hào)是_ .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市在藝術(shù)節(jié)中組織中小學(xué)校文藝匯演,甲、乙兩所學(xué)校共92名學(xué)生其中甲校學(xué)生多于乙校學(xué)生,且甲校學(xué)生不足90,現(xiàn)準(zhǔn)備統(tǒng)一購(gòu)買服裝參加演出,下表是某服裝廠給出的演出服裝價(jià)格表:

購(gòu)買服裝的套數(shù)

1套至45

46套至90

91套及以上

每套服裝的價(jià)格

60

50

40

如果兩所學(xué)校單獨(dú)購(gòu)買服裝,一共應(yīng)付5000

1)甲、乙兩校各有多少名學(xué)生準(zhǔn)備參加匯演?

2)如果甲、乙兩校聯(lián)合起來購(gòu)買服裝,那么比各自購(gòu)買服裝共可以節(jié)省多少錢?

3)如果甲校有10名學(xué)生被調(diào)去參加書法繪畫比賽不能參加演出,請(qǐng)你為兩校設(shè)計(jì)購(gòu)買服裝方案,并說明哪一種最省錢.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】怡然美食店的A、B兩種菜品,每份成本均為14元,售價(jià)分別為20元、18元,這兩種菜品每天的營(yíng)業(yè)額共為1120元,總利潤(rùn)為280元.

1)該店每天賣出這兩種菜品共多少份?

2)該店為了增加利潤(rùn),準(zhǔn)備降低A種菜品的售價(jià),同時(shí)提高B種菜品的售價(jià),售賣時(shí)發(fā)現(xiàn),A種菜品售價(jià)每降0.5元可多賣1份;B種菜品售價(jià)每提高0.5元就少賣1份,如果這兩種菜品每天銷售總份數(shù)不變,那么這兩種菜品一天的總利潤(rùn)最多是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案