【題目】學校6名教師和234名學生集體外出活動,準備租用45座大車或30座小車.若租用1輛大車2輛小車共需租車費1000元;若租用2輛大車一輛小車共需租車費1100元.
(1)求大、小車每輛的租車費各是多少元?
(2)若每輛車上至少要有一名教師,且總租車費用不超過2300元,求最省錢的租車方案.
【答案】(1)大車每輛的租車費是400元、小車每輛的租車費是300元;(2)最省錢的租車方案是:4輛大車,2輛小車
【解析】
(1)設(shè)大車每輛的租車費是x元、小車每輛的租車費是y元.根據(jù)題意:“租用1輛大車2輛小車共需租車費1000元”;“租用2輛大車一輛小車共需租車費1100元”;列出方程組,求解即可;
(2)根據(jù)汽車總數(shù)不能小于(取整為6)輛,即可求出共需租汽車的輛數(shù);設(shè)租用大車m輛,則租車費用Q(單位:元)是m的函數(shù),由題意得出400m+300(6-m)≤2300,得出取值范圍,分析得出即可.
解:(1)設(shè)大車每輛的租車費是x元、小車每輛的租車費是y元.
可得方程組,
解得.
答:大車每輛的租車費是400元、小車每輛的租車費是300元;
(2)由每輛汽車上至少要有1名老師,汽車總數(shù)不能大于6輛;
又要保證240名師生有車坐,汽車總數(shù)不能小于(取整為6)輛,
綜合起來可知汽車總數(shù)為6輛.
設(shè)租用m輛大型車,則租車費用Q(單位:元)是m的函數(shù),
即Q=400m+300(6-m);
化簡為:Q=100m+1800,
依題意有:100m+1800≤2300,
∴m≤5,
又要保證240名師生有車坐,45m+30(6-m)≥240,解得m≥4,
所以有兩種租車方案,
方案一:4輛大車,2輛小車;
方案二:5輛大車,1輛小車.
∵Q隨m增加而增加,
∴當m=4時,Q最少為2200元.
故最省錢的租車方案是:4輛大車,2輛小車.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1所示,在A,B兩地之間有汽車站C站,客車由A地駛往C站,貨車由B地駛往A地.兩車同時出發(fā),勻速行駛.圖2是客車、貨車離C站的路程y1,y2(千米)與行駛時間x(小時)之間的函數(shù)關(guān)系圖象.
(1)填空:A,B兩地相距 千米;
(2)求兩小時后,貨車離C站的路程y2與行駛時間x之間的函數(shù)關(guān)系式;
(3)客、貨兩車何時相遇?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A(1,a)是反比例函數(shù)的圖象上一點,直線與反比例函數(shù)的圖象的交點為點B、D,且B(3,﹣1),求:
(1)求反比例函數(shù)的解析式;
(2)求點D坐標,并直接寫出y1>y2時x的取值范圍;
(3)動點P(x,0)在x軸的正半軸上運動,當線段PA與線段PB之差達到最大時,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對一張矩形紙片ABCD進行折疊,具體操作如下:
第一步:先對折,使AD與BC重合,得到折痕MN,展開;
第二步:再一次折疊,使點A落在MN的點A′處,并使折痕經(jīng)過點B,得到折痕BE,同時,得到線段BA′,EA′,展開,如圖1;
第三步:再沿EA′所在的直線折疊,點B落在AD的點B′處,得到折痕EF,同時得到線段B′F,展開,如圖2.
(1)證明:∠ABE=30°;
(2)證明:四邊形BFB′E為菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:△ABC與△A'B'C在平面直角坐標系中的位置如圖.
(1)分別寫出B、B'的坐標:B______;B′______;
(2)若點P(a,b)是△ABC內(nèi)部一點,則平移后△A'B'C內(nèi)的對應點P′的坐標為______;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,OABC是一張放在平面直角坐標系中的矩形紙片,O為原點,點A在x軸的正半軸上,點C在y軸的正半軸上,OA=10,OC=8,在OC邊上取一點D,將紙片沿AD翻折,使點O落在BC邊上的點E處,則D點的坐標是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市進行“新城區(qū)改造建設(shè)”,有甲、乙兩種車參加運土,已知5輛甲種車和2輛乙種車一次共可運土64米,3輛甲種車和1輛乙種車一次共可運土36米.
(1)求甲、乙兩種車每輛一次可分別運土多少米;
(2)某公司派甲、乙兩種汽車共10輛參加運土,且一次運土總量不低于100米,求公司最多要派多少輛甲種汽車參加運土.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】九(1)班數(shù)學興趣小組經(jīng)過市場調(diào)查,整理出某種商品在第x()天的售價與銷量的相關(guān)信息如下表:
時間(天) | ||
售價(元/件) | x+40 | 90 |
每天銷量(件) | 200-2x | 200-2x |
(1)求出y與x的函數(shù)關(guān)系式;
(2)問銷售該商品第幾天時,當天銷售利潤最大?最大利潤是多少?
(3)該商品在銷售過程中,共有多少天每天銷售利潤不低于4800元?請直接寫出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在直徑為AB的半圓內(nèi),劃出一塊三角形區(qū)域,如圖所示,使三角形的一邊為AB,頂點C在半圓圓周上,其它兩邊分別為6和8,現(xiàn)要建造一個內(nèi)接于△ABC的矩形水池DEFN,其中D、E在AB上,如圖24-94的設(shè)計方案是使AC=8,BC=6.
(1)求△ABC的邊AB上的高h.
(2)設(shè)DN=x,且,當x取何值時,水池DEFN的面積最大?
(3)實際施工時,發(fā)現(xiàn)在AB上距B點1.85的M處有一棵大樹,問:這棵大樹是否位于最大矩形水池的邊上?如果在,為了保護大樹,請設(shè)計出另外的方案,使內(nèi)接于滿足條件的三角形中欲建的最大矩形水池能避開大樹.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com