【題目】在四邊形ABCD中,AD∥BC,∠B=∠C,要使四邊形ABCD為矩形,還需添加一個條件,這個條件可以是( )
A. AB=CD
B. AC=BD
C. ∠A=∠D
D. ∠A=∠B
科目:初中數(shù)學 來源: 題型:
【題目】已知等腰三角形ABC的底邊長BC=20cm,D是AC上的一點,且BD=16cm,CD=12cm.
(1)求證:BD⊥AC;
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,OA⊥OB,AB⊥x軸于點C,點A( ,1)在反比例函數(shù)y= (x≠0)的圖象上.
(1)求反比例函數(shù)y= (x≠0)的解析式和點B的坐標;
(2)若將△BOA繞點B按逆時針方向旋轉(zhuǎn)60°得到△BDE(點O與點D是對應點),補全圖形,直接寫出點E的坐標,并判斷點E是否在該反比例函數(shù)的圖象上,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC與△CED均為等邊三角形,且B,C,D三點共線.線段BE,AD相交于點O,AF⊥BE于點F.若OF=1,則AF的長為( )
A. 1 B. C. D. 2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】張大伯承包了一個四邊形的池塘,如圖所示,它的四個角A,B,C,D處均有一棵大樹,張大伯今年養(yǎng)魚喜獲豐收,明年準備把池塘面積擴大一倍,但又不想毀掉這四棵大樹,并且擴建后的池塘呈平行四邊形形狀.張大伯這一設想是否能實現(xiàn)?請你幫助他解決一下,并畫出草圖.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,和是兩個全等的三角形,,.現(xiàn)將和按如圖所示的方式疊放在一起,保持不動,運動,且滿足:點E在邊BC上運動(不與點B,C重合),且邊DE始終經(jīng)過點A,EF與AC交于點M .
(1)求證:∠BAE=∠MEC;
(2)當E在BC中點時,請求出ME:MF的值;
(3)在的運動過程中,能否構(gòu)成等腰三角形?若能,請直接寫出所有符合條件的BE的長;若不能,則請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了響應“中小學生每天鍛煉1小時”的號召,某校開展了形式多樣的“陽光體育”活動,小明對某班同學參加鍛煉的情況進行了調(diào)查與統(tǒng)計,并繪制了下面的圖1與圖2.根據(jù)你對圖1與圖2的理解,回答下列問題:
(1)小明調(diào)查的這個班級有多少名學生,參加足球鍛煉的學生人數(shù)所占的百分比是多少?
(2)請你將圖1中“乒乓球”部分補充完整.
(3)求出扇形統(tǒng)計圖中表示“足球”的扇形的圓心角的度數(shù).
(4)若這個學校共有1200名學生,估計參加乒乓球活動的學生有多少名學生?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,OP平分∠AOB,∠AOP=15°,PC∥OA,PD⊥OA于點D,PC=4,則PD的長為( )
A. 2 B. 3 C. 4 D. 2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,對角線AC、BD相交于點O.
⑴若AB=BC,則是_______.
⑵若AC=BD,則是_________.
⑶若∠BCD=90°,則是_________.
⑷若OA=OB,且OA⊥OB,則是_________.
⑸若AB=BC,且AC=BD,則是_________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com