【題目】如圖,已知△ABC中,∠ACB=90°,AC=1,BC=2,CD平分∠ACB交邊AB與點(diǎn)D,P是射線CD上一點(diǎn),聯(lián)結(jié)AP.
(1)求線段CD的長(zhǎng);
(2)當(dāng)點(diǎn)P在CD的延長(zhǎng)線上,且∠PAB=45°時(shí),求CP的長(zhǎng);
(3)記點(diǎn)M為邊AB的中點(diǎn),聯(lián)結(jié)CM、PM,若△CMP是等腰三角形,求CP的長(zhǎng).
【答案】(1);(2);(3)CP的長(zhǎng)是或或.
【解析】分析:(1)作輔助線,證明四邊形ECFD是正方形,設(shè)DF=x,則CF=x,BF=2﹣x,由△BDF∽△BAC,得,可得CD的長(zhǎng);
(2)如圖2,作輔助線,構(gòu)建全等三角形,先根據(jù)C、B、P、A四點(diǎn)共圓,得∠APB=90°,可知AP=BP,由角平分線性質(zhì)得:PM=PN,根據(jù)HL證明Rt△PMA≌Rt△PNB(HL),得AM=BN,設(shè)AM=x,則PM=CM=x+1,CN=2﹣x,由CM=CN列方程可得x的值,可得CD的長(zhǎng);
(3)存在三種情況:
①當(dāng)PM=CM時(shí),如圖3,同理作出輔助線,根據(jù)△PCM是等腰直角三角形,可得CP的長(zhǎng);
②先根據(jù)勾股定理求AB=,根據(jù)直角三角形斜邊中線等于斜邊一半可得CP的長(zhǎng);
③由△CPN∽△CMH,列比例式結(jié)合①可得CP的長(zhǎng).
詳解:(1)如圖1,過D作DE⊥AC于E,DF⊥BC于F.
∵DF平分∠ACB,∠ACB=90°,∴DE=DF.
∵∠DEC=∠ACB=∠CFD=90°,
∴四邊形ECFD是正方形.
設(shè)DF=x,則CF=x,BF=2﹣x.
∵DF∥AC,∴△BDF∽△BAC,
∴,∴x=.
∵△CDE是等腰直角三角形,∴CD=;
(2)如圖2.∵∠PAB=∠PCB=45°,
∴C、B、P、A四點(diǎn)共圓,∴∠ACB+∠APB=180°.
∵∠ACB=90°,∴∠APB=90°,
∴△APB是等腰直角三角形,∴AP=BP.
過P作PM⊥AC于M,PN⊥BC于N,連接PB.
∵PM=PN,∴R△PMA≌Rt△PNB(HL),∴AM=BN.
由(1)知:四邊形MCNP是正方形,∴CM=CN.
設(shè)AM=x,則PM=CM=x+1,CN=2﹣x,
∴x+1=2﹣x,x=,∴CM=,∴CP=;
(3)若△CMP是等腰三角形,存在三種情況:
①當(dāng)PM=CM時(shí),如圖3,同理作出輔助線.
∵∠PCN=45°,∴△PCM是等腰直角三角形,∴CN=PN,
同(2)得:CP=;
②Rt△ACB中,AC=1,BC=2,∴AB=.
∵M是AB的中點(diǎn),∴CM=CP=AB=;
③作CM的中垂線交CD于P,則CP=PM,過M作MH⊥CD于H.
由①知:CG(就是CP=)=,CH=.
∵△CPN∽△CMH,∴=,CP=.
綜上所述:CP的長(zhǎng)是或或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我省教育廳下發(fā)了在全省中小學(xué)幼兒園廣泛開展節(jié)約教育的通知,通知中要求各學(xué)校全面持續(xù)開展“光盤行動(dòng)”深圳市教育局督導(dǎo)組為了調(diào)查學(xué)生對(duì)“節(jié)約教育”內(nèi)容的了解程度程度分為:“A:了解很多”、“B:了解較多”、“C:了解較少”、“D:不了解”,對(duì)本市某所中學(xué)的學(xué)生進(jìn)行了抽樣調(diào)查我們將這次調(diào)查的結(jié)果繪制了以下兩幅不完整統(tǒng)計(jì)圖:
根據(jù)以上信息,解答下列問題:
補(bǔ)全條形統(tǒng)計(jì)圖;
本次抽樣調(diào)查了______名學(xué)生;在扇形統(tǒng)計(jì)圖中,求出“D”的部分所對(duì)應(yīng)的圓心角度數(shù).
若該中學(xué)共有2000名學(xué)生,請(qǐng)你估計(jì)這所中學(xué)的所有學(xué)生中,對(duì)“節(jié)約教育”內(nèi)容“了解較少”的有多少人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD中,對(duì)角線BD平分∠ABC,∠ADB=32°,∠BCD+∠DCA=180°,那么∠ACD為_____度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了解學(xué)生的課外閱讀情況,隨機(jī)抽取了50名學(xué)生,并統(tǒng)計(jì)他們平均每天的課外閱讀時(shí)間t(單位:min),然后利用所得數(shù)據(jù)繪制成如下不完整的統(tǒng)計(jì)表.
課外閱讀時(shí)間t | 頻數(shù) | 百分比 |
10≤t<30 | 4 | 8% |
30≤t<50 | 8 | 16% |
50≤t<70 | a | 40% |
70≤t<90 | 16 | b |
90≤t<110 | 2 | 4% |
合計(jì) | 50 | 100% |
請(qǐng)根據(jù)圖表中提供的信息回答下列問題:
(1)a= ,b= ;
(2)將頻數(shù)分布直方圖補(bǔ)充完整;
(3)若全校有900名學(xué)生,估計(jì)該校有多少學(xué)生平均每天的課外閱讀時(shí)間不少于50min?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與雙曲線相交于點(diǎn)A(m,3),與x軸交于點(diǎn)C.
(1)求雙曲線解析式;
(2)點(diǎn)P在x軸上,如果△ACP的面積為3,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)在下列兩個(gè)條件下,分別求代數(shù)式和的值,將結(jié)果直接填寫在下面的橫線上:
①當(dāng)時(shí),= ,= ;
②當(dāng)時(shí),= ,= ;
(2)觀察結(jié)果,你有什么發(fā)現(xiàn)?請(qǐng)寫出結(jié)論,并再任選a、b的值加以驗(yàn)證;
(3)利用你的發(fā)現(xiàn),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,分別以 Rt△ ABC 的直角邊 AC 及斜邊 AB 向外作等邊△ ACD,等邊△ ABE.已知∠ABC=60°,EF⊥AB,垂足為 F,連接 DF.
(1)證明:△ACB≌△EFB;
(2)求證:四邊形 ADFE 是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,直線EF分別與AB、CD交于點(diǎn)G,H,GM⊥EF,HN⊥EF,交AB于點(diǎn)N,∠1=50°.
(1)求∠2的度數(shù);
(2)試說明HN∥GM;
(3)∠HNG= .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com