【題目】如圖,二次函數(shù)yax2+bx+ca≠0)圖象的頂點(diǎn)為D,其圖象與x軸的交點(diǎn)AB的橫坐標(biāo)分別為﹣1,3,與y軸負(fù)半軸交于點(diǎn)C.以下五個(gè)結(jié)論:①2a+b0;②a+b+c0;③4a+b+c0;④只有當(dāng)a時(shí),ABD是等腰直角三角形;⑤使ACB為等腰三角形的a的值可以有兩個(gè).那么,其中正確的結(jié)論是_____

【答案】①④⑤

【解析】

先根據(jù)圖象與x軸的交點(diǎn)AB的橫坐標(biāo)分別為-1,3確定出AB的長(zhǎng)及對(duì)稱軸,再由拋物線的開口方向判斷a0的關(guān)系,由拋物線與y軸的交點(diǎn)判斷c0的關(guān)系,然后根據(jù)對(duì)稱軸及拋物線與x軸交點(diǎn)情況進(jìn)行推理,進(jìn)而對(duì)所得結(jié)論進(jìn)行判斷.

解:①∵圖象與x軸的交點(diǎn)A,B的橫坐標(biāo)分別為﹣1,3

AB4,

∴對(duì)稱軸x=1

2a+b0;

故①正確;

②由拋物線的開口方向向上可推出a0,而0

b0,

∵對(duì)稱軸x1,

∴當(dāng)x1時(shí),y0,

a+b+c0;

故②錯(cuò)誤;

③∵圖象與x軸的交點(diǎn)A,B的橫坐標(biāo)分別為﹣1,3,

ab+c0,9a+3b+c0,

10a+2b+2c0

5a+b+c0,

a+4a+b+c0,

a0

4a+b+c0,

故③錯(cuò)誤;

④要使ABD為等腰直角三角形,必須保證Dx軸的距離等于AB長(zhǎng)的一半;

Dx軸的距離就是當(dāng)x1時(shí)y的值的絕對(duì)值.

當(dāng)x1時(shí),ya+b+c,

|a+b+c|2,

∵當(dāng)x1時(shí)y0,

a+b+c=﹣2,

又∵圖象與x軸的交點(diǎn)A,B的橫坐標(biāo)分別為﹣1,3,

∴當(dāng)x=﹣1時(shí)y0ab+c0;

x3時(shí)y0

9a+3b+c0,

解這三個(gè)方程可得:b=﹣1,a,c=﹣

⑤要使ACB為等腰三角形,則必須保證ABBC4ABAC4ACBC,

當(dāng)ABBC4時(shí),

AO1,BOC為直角三角形,

又∵OC的長(zhǎng)即為|c|,

c21697

∵由拋物線與y軸的交點(diǎn)在y軸的負(fù)半軸上,

c=﹣,

2a+b0、ab+c0聯(lián)立組成解方程組,解得a;

同理當(dāng)ABAC4時(shí),

AO1,AOC為直角三角形,

又∵OC的長(zhǎng)即為|c|,

c216115

∵由拋物線與y軸的交點(diǎn)在y軸的負(fù)半軸上,

c=﹣

2a+b0ab+c0聯(lián)立組成解方程組,解得a;

同理當(dāng)ACBC時(shí)

在△AOC中,AC21+c2,

在△BOCBC2c2+9,

ACBC,

1+c2c2+9,此方程無(wú)解.

經(jīng)解方程組可知只有兩個(gè)a值滿足條件.

故⑤正確.

故答案為:①④⑤.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解題.

定義:如果四邊形的某條對(duì)角線平分一組對(duì)角,那么把這條對(duì)角線叫做美妙線,該四邊形叫做美妙四邊形

如圖,在四邊形ABDC中,對(duì)角線BC平分∠ACD∠ABD,那么對(duì)角線BC美妙線,四邊形ABDC就稱為美妙四邊形

問題:

1)下列四邊形:平行四邊形、矩形、菱形、正方形,其中是美妙四邊形的有 個(gè);

2)四邊形ABCD美妙四邊形,AB=∠BAD=60°,∠ABC=90°,求四邊形ABCD的面積.(畫出圖形并寫出解答過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為推進(jìn)“傳統(tǒng)文化進(jìn)校園”活動(dòng),我市某中學(xué)舉行了“走進(jìn)經(jīng)典”征文比賽,賽后整理參賽學(xué)生的成績(jī),將學(xué)生的成績(jī)分為四個(gè)等級(jí),并將結(jié)果繪制成不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.請(qǐng)根據(jù)統(tǒng)計(jì)圖解答下列問題:

1)參加征文比賽的學(xué)生共有 人;

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)在扇形統(tǒng)計(jì)圖中,表示等級(jí)的扇形的圓心角為__ 圖中 ;

4)學(xué)校決定從本次比賽獲得等級(jí)的學(xué)生中選出兩名去參加市征文比賽,已知等級(jí)中有男生一名,女生兩名,請(qǐng)用列表或畫樹狀圖的方法求出所選兩名學(xué)生恰好是一名男生和一名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班為了解學(xué)生一學(xué)期做義工的時(shí)間情況,對(duì)全班50名學(xué)生進(jìn)行調(diào)查,按做義工的時(shí)間(單位:小時(shí)),將學(xué)生分成五類: 類( ),類(),類(),類(),類(),繪制成尚不完整的條形統(tǒng)計(jì)圖如圖11.

根據(jù)以上信息,解答下列問題:

1 類學(xué)生有 人,補(bǔ)全條形統(tǒng)計(jì)圖;

2類學(xué)生人數(shù)占被調(diào)查總?cè)藬?shù)的 %;

(3)從該班做義工時(shí)間在的學(xué)生中任選2人,求這2人做義工時(shí)間都在 中的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點(diǎn),與交于點(diǎn),與軸交于點(diǎn)軸于點(diǎn),且

1)求一次函數(shù)和反比例函數(shù)的解析式;

2)點(diǎn)為反比例函數(shù)圖象上使得四邊形為菱形的一點(diǎn),點(diǎn)軸上的一動(dòng)點(diǎn),當(dāng)最大時(shí),求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,專業(yè)救助船滬救1”輪、滬救2”輪分別位于A、B兩處,同時(shí)測(cè)得事發(fā)地點(diǎn)CA的南偏東60°CB的南偏東30°上.已知BA的正東方向,且相距100里,請(qǐng)分別求出兩艘船到達(dá)事發(fā)地點(diǎn)C的距離.(注:里是海程單位,相當(dāng)于一海里.結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為進(jìn)一步提升學(xué)生的法律素質(zhì),中學(xué)組織學(xué)生開展《憲法》知識(shí)競(jìng)賽,該學(xué)校隨機(jī)抽取部分學(xué)生的成績(jī)并進(jìn)行統(tǒng)計(jì)分析,以了解學(xué)生的法律知識(shí)水平.根據(jù)這些學(xué)生的競(jìng)賽成績(jī)分布情況,將競(jìng)賽成績(jī)分為甲、乙、丙、丁、戊五個(gè)等級(jí).圖表如下:

等級(jí)

分?jǐn)?shù)/

頻數(shù)

各組總分/

39

2184

75

5175

120

9720

4050

21

2037

1)求的值;

2)競(jìng)賽成績(jī)的中位數(shù)落在哪個(gè)等級(jí)?

3)求這組競(jìng)賽成績(jī)的平均值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將兩個(gè)全等的直角三角形ABC和DBE按圖①方式擺放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,點(diǎn)E落在AB上,DE所在直線交AC所在直線于點(diǎn)F.

(1)求證:AF+EF=DE;

(2)若將圖①中的△DBE繞點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)角α,且0°<α<60°,其它條件不變,請(qǐng)?jiān)趫D②中畫出變換后的圖形,并直接寫出你在(1)中猜想的結(jié)論是否仍然成立;

(3)若將圖①中的△DBE繞點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)角β,且60°<β<180°,其它條件不變,如圖③.你認(rèn)為(1)中猜想的結(jié)論還成立嗎?若成立,寫出證明過程;若不成立,請(qǐng)寫出AF、EF與DE之間的關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線經(jīng)過點(diǎn),,直線軸于點(diǎn),且與拋物線交于、兩點(diǎn).為拋物線上一動(dòng)點(diǎn)(不與點(diǎn),重合).

1)求拋物線的解析式;

2)當(dāng)點(diǎn)在直線上方時(shí),過點(diǎn)軸交于點(diǎn),軸交于點(diǎn),求的最大值;

3)設(shè)為直線上的點(diǎn),以,,,為頂點(diǎn)的四邊形能否構(gòu)成平行四邊形?若能,請(qǐng)直接寫出點(diǎn)的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案