【題目】如圖:已知△ABC中,AB=5,BC=3,AC=4,PQ∥AB,P點(diǎn)在AC上(與A、C不重合),Q在BC上.
(1)當(dāng)△PQC的面積與四邊形PABQ的面積相等時(shí),求CP的長;
(2)當(dāng)△PQC的周長與四邊形PABQ的周長相等時(shí),求CP的長;
(3)試問:在AB上是否存在一點(diǎn)M,使得△PQM為等腰直角三角形?若不存在,請簡要說明理由;若存在,請求出PQ的長.
【答案】(1) ;(2) ;(3)存在,和.
【解析】
(1)由于PQ∥AB,故△PQC∽△ABC,當(dāng)△PQC的面積與四邊形PABQ的面積相等時(shí),△CPQ與△CAB的面積比為1:2,根據(jù)相似三角形的面積比等于相似比的平方,可求出CP的長;
(2)由于△PQC∽△ABC,根據(jù)相似三角形的性質(zhì),可用CP表示出PQ和CQ的長,進(jìn)而可表示出AP、BQ的長.根據(jù)△CPQ和四邊形ABQP的周長相等,可將相關(guān)的各邊相加,即可求出CP的長;
(3)因?yàn)椴荒艽_定哪個(gè)角是直角,故應(yīng)分類討論.
①當(dāng)∠MPQ=90°,且PM=PQ時(shí).因?yàn)?/span>△CPQ∽△CAB,根據(jù)相似三角形邊長的比等于高的比,可求出PQ的值;
②∠PQM=90°時(shí)與①相同;
③當(dāng)∠PMQ=90°,且PM=MQ時(shí),過M作ME⊥PQ,則ME=PQ,根據(jù)相似三角形邊長的比等于高的比,可求出PQ的值.
(1)∵PQ∥AB,
∴△PQC∽△ABC,
∵S△PQC=S四邊形PABQ,
∴S△PQC:S△ABC=1:2,
∴,
∴CP=CA=2;
(2)∵△PQC∽△ABC,
∴,
∴,
∴CQ=CP,
同理:PQ=CP,
∴l△PCQ=CP+PQ+CQ=CP+CP+CP=3CP,
I四邊形PABQ=PA+AB+BQ+PQ,
=4﹣CP+AB+3﹣CQ+PQ,
=4﹣CP+5+3﹣CP+CP,
=12﹣CP,
∴12﹣CP=3CP,
∴CP=12,
∴CP=;
(3)∵AC=4,AB=5,BC=3,
∴△ABC中AB邊上的高為,
①當(dāng)∠MPQ=90°,且PM=PQ時(shí),
∵△CPQ∽△CAB,
∴,
∴,
∴PQ=;
②當(dāng)∠PQM=90°時(shí)與①相同;
③當(dāng)∠PMQ=90°,且PM=MQ時(shí),
過M作ME⊥PQ,則ME=PQ,
∴△CPQ的高為﹣ME=﹣PQ,
∴,
∴,
∴PQ=.
綜合①②③可知:點(diǎn)M存在,PQ的長為或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線的部分圖象如圖所示,與x軸的一個(gè)交點(diǎn)坐標(biāo)為,拋物線的對稱軸是下列結(jié)論中:
;;方程有兩個(gè)不相等的實(shí)數(shù)根;拋物線與x軸的另一個(gè)交點(diǎn)坐標(biāo)為;若點(diǎn)在該拋物線上,則.
其中正確的有
A. 5個(gè) B. 4個(gè) C. 3個(gè) D. 2個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為保證車輛行駛安全,現(xiàn)在公路旁設(shè)立一檢測點(diǎn)A觀測行駛的汽車是否超速.如圖,檢測點(diǎn)A到公路的距離是24米,在公路上取兩點(diǎn)B、C,使得∠ACB=30°,∠ABC=120°.
(1)求BC的長(結(jié)果保留根號);
(2)已知該路段限速為45千米/小時(shí),若測得某汽車從B到C用時(shí)2秒,這輛汽車是否超速?說明理由.(參考數(shù)據(jù):≈1.7,≈1.4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A是反比例函數(shù)y=的圖象在第一象限上的動點(diǎn),連結(jié)AO并延長交另一分支于點(diǎn)B,以AB為邊作等邊△ABC使點(diǎn)C落在第二象限,且邊BC交x軸于點(diǎn)D,若△ACD與△ABD的面積之比為1:2,則點(diǎn)C的坐標(biāo)為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將邊長為2cm的正方形ABCD沿其對角線AC剪開,再把△ABC沿著AD方向平移,得到△A′B′C′,若兩個(gè)三角形重疊部分的面積為1cm2,則它移動的距離AA′等于( )
A. 0.5cm B. 1cm C. 1.5cm D. 2cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E是正方形ABCD的邊DC上一點(diǎn),把△ADE順時(shí)針旋轉(zhuǎn)△ABF的位置.
(1)旋轉(zhuǎn)中心是點(diǎn) ,旋轉(zhuǎn)角度是 度;
(2)若連結(jié)EF,則△AEF是 三角形;并證明;
(3)若四邊形AECF的面積為25,DE=2,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的弦AB=4cm,點(diǎn)C為優(yōu)弧上的動點(diǎn),且∠ACB=30°.若弦DE經(jīng)過弦AC、BC的中點(diǎn)M、N,則DM+EN的最大值是_____cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某地有一座圓弧形拱橋,
(1)如圖1,請用尺規(guī)作出圓弧所在圓的圓心O;
(2)如圖2,過點(diǎn)O作OC⊥AB于點(diǎn)D,交圓弧于點(diǎn)C,CD=2.4 m.橋下水面寬度AB為7.2 m,現(xiàn)有一艘寬3 m、船艙頂部為方形并高出水面2 m的貨船要經(jīng)過拱橋,請通過計(jì)算說明此貨船能否順利通過這座拱橋.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一塊含30°角的直角三角板OAB的直角邊BO的長恰與另一塊等腰直角三角板ODC的斜邊OC的長相等,把這兩塊三角板放置在平面直角坐標(biāo)系中,且OB=3.
(1)若某反比例函數(shù)的圖象的一個(gè)分支恰好經(jīng)過點(diǎn)A,求這個(gè)反比例函數(shù)的解析式;
(2)若把含30°角的直角三角板繞點(diǎn)O按順時(shí)針方向旋轉(zhuǎn)后,斜邊OA恰好落在x軸上,點(diǎn)A落在點(diǎn)A′處,試求圖中陰影部分的面積.(結(jié)果保留π)
【答案】(1)反比例函數(shù)的解析式為y=;(2)S陰影=6π-.
【解析】分析:(1)根據(jù)tan30°=,求出AB,進(jìn)而求出OA,得出A的坐標(biāo),設(shè)過A的雙曲線的解析式是y=,把A的坐標(biāo)代入求出即可;(2)求出∠AOA′,根據(jù)扇形的面積公式求出扇形AOA′的面積,求出OD、DC長,求出△ODC的面積,相減即可求出答案.
本題解析:
(1)在Rt△OBA中,∠AOB=30°,OB=3,
∴AB=OB·tan 30°=3.
∴點(diǎn)A的坐標(biāo)為(3,3).
設(shè)反比例函數(shù)的解析式為y= (k≠0),
∴3=,∴k=9,則這個(gè)反比例函數(shù)的解析式為y=.
(2)在Rt△OBA中,∠AOB=30°,AB=3,
sin ∠AOB=,即sin 30°=,
∴OA=6.
由題意得:∠AOC=60°,S扇形AOA′==6π.
在Rt△OCD中,∠DOC=45°,OC=OB=3,
∴OD=OC·cos 45°=3×=.
∴S△ODC=OD2==.
∴S陰影=S扇形AOA′-S△ODC=6π-.
點(diǎn)睛:本題考查了勾股定理、待定系數(shù)法求函數(shù)解析式、特殊角的三角函數(shù)值、扇形的面積及等腰三角形的性質(zhì),本題屬于中檔題,難度不大,將不規(guī)則的圖形的面積表示成多個(gè)規(guī)則圖形的面積之和是解答本題的關(guān)鍵.
【題型】解答題
【結(jié)束】
26
【題目】矩形ABCD一條邊AD=8,將矩形ABCD折疊,使得點(diǎn)B落在CD邊上的點(diǎn)P處.
(1)如圖①,已知折痕與邊BC交于點(diǎn)O,連接AP,OP,OA.
① 求證:△OCP∽△PDA;
② 若△OCP與△PDA的面積比為1:4,求邊AB的長.
(2)如圖②,在(1)的條件下,擦去AO和OP,連接BP.動點(diǎn)M在線段AP上(不與點(diǎn)P,A重合),動點(diǎn)N在線段AB的延長線上,且BN=PM,連接MN交PB于點(diǎn)F,作ME⊥BP于點(diǎn)E.試問動點(diǎn)M,N在移動的過程中,線段EF的長度是否發(fā)生變化?若不變,求出線段EF的長度;若變化,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com