(1)若=,判斷代數(shù)式-+1值的符號
(2)若==,求的值。
解:(1)設==k,則a=bk,c=dk,代入,得,求值式=-+1=k-k+1=1>0,故所求式的符號為正
(2)當a+b+c≠0時,因為abc≠0,所以由等比性質得:===所以a+b=2c,b+c=2a,c+a=2b,代入得,求式==8
當a+b+c=0,a+b=--c,b+c=-a,c+a=-b,代入所求式==-1解析:
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

請先閱讀例題的解答過程,然后再解答:
代數(shù)第三冊在解方程3x(x+2)=5(x+2)時,先將方程變形為3x(x+2)-5(x+2)=0,這個方程左邊可以分解成兩個一次因式的積,所以方程變形為(x+2)(3x-5)=0.我們知道,如果兩個因式的積等于0,那么這兩個因式中至少有一個等于0;反過來,如果兩個因式有一個等于0,它們的積等于0.因此,解方程(x+2)(3x-5)=0,就相當于解方程x+2=0或3x-5=0,得到原方程的解為x1=-2,x2=
5
3

根據(jù)上面解一元二次方程的過程,王力推測:a﹒b>0,則有
a>0
b>0
a<0
b<0
,請判斷王力的推測是否正確?若正確,請你求出不等式
5x-1
2x-3
>0的解集,如果不正確,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖(1),已知正方形ABCD在直線MN的上方,B、C在直線MN上,E是BC上一點,以AE為邊在直線MN的上方作正方形AEFG.
(1)連接GD,求證△ADG≌△ABE;
(2)如圖(2),將圖(1)中正方形ABCD改為矩形ABCD,AB=a,BC=b(a、b為常數(shù)),E是線段BC上一動點(不含端點B、C),以AE為邊在直線MN的上方作矩形AEFG,使頂點G恰好落在射線CD上.判斷當E由B向C運動時,∠FCN的大小是否保持不變?若∠FCN的大小不變,請用含a、b的代數(shù)表示tan∠FCN的值;若∠FCN的大小發(fā)生改變,請舉例說明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

請先閱讀例題的解答過程,然后再解答:
代數(shù)第三冊在解方程3x(x+2)=5(x+2)時,先將方程變形為3x(x+2)-5(x+2)=0,這個方程左邊可以分解成兩個一次因式的積,所以方程變形為(x+2)(3x-5)=0.我們知道,如果兩個因式的積等于0,那么這兩個因式中至少有一個等于0;反過來,如果兩個因式有一個等于0,它們的積等于0.因此,解方程(x+2)(3x-5)=0,就相當于解方程x+2=0或3x-5=0,得到原方程的解為x1=-2,x2=數(shù)學公式
根據(jù)上面解一元二次方程的過程,王力推測:a﹒b>0,則有數(shù)學公式數(shù)學公式,請判斷王力的推測是否正確?若正確,請你求出不等式數(shù)學公式>0的解集,如果不正確,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《一元二次方程》(04)(解析版) 題型:解答題

(2004•烏魯木齊)請先閱讀例題的解答過程,然后再解答:
代數(shù)第三冊在解方程3x(x+2)=5(x+2)時,先將方程變形為3x(x+2)-5(x+2)=0,這個方程左邊可以分解成兩個一次因式的積,所以方程變形為(x+2)(3x-5)=0.我們知道,如果兩個因式的積等于0,那么這兩個因式中至少有一個等于0;反過來,如果兩個因式有一個等于0,它們的積等于0.因此,解方程(x+2)(3x-5)=0,就相當于解方程x+2=0或3x-5=0,得到原方程的解為x1=-2,x2=
根據(jù)上面解一元二次方程的過程,王力推測:a﹒b>0,則有,請判斷王力的推測是否正確?若正確,請你求出不等式>0的解集,如果不正確,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年新疆烏魯木齊市中考數(shù)學試卷(解析版) 題型:解答題

(2004•烏魯木齊)請先閱讀例題的解答過程,然后再解答:
代數(shù)第三冊在解方程3x(x+2)=5(x+2)時,先將方程變形為3x(x+2)-5(x+2)=0,這個方程左邊可以分解成兩個一次因式的積,所以方程變形為(x+2)(3x-5)=0.我們知道,如果兩個因式的積等于0,那么這兩個因式中至少有一個等于0;反過來,如果兩個因式有一個等于0,它們的積等于0.因此,解方程(x+2)(3x-5)=0,就相當于解方程x+2=0或3x-5=0,得到原方程的解為x1=-2,x2=
根據(jù)上面解一元二次方程的過程,王力推測:a﹒b>0,則有,請判斷王力的推測是否正確?若正確,請你求出不等式>0的解集,如果不正確,請說明理由.

查看答案和解析>>

同步練習冊答案