【題目】如圖,在正方形ABCD的邊AB上取一點E,連接CE,將BCE沿CE翻折,點B恰好與對角線AC上的點F重合,連接DF,若BE1,則CDF的面積是_____

【答案】

【解析】

由折疊可得EFBE1,∠CFE=∠B90°,且∠FAE45°可得AF1,AE,即可求對角線BD的長,則可求△CDF面積

如圖連接BDACO

ABCD為正方形

∴∠ABC90°ABBC,ACBD,DOBO,∠BAC45°

∵△BCE沿CE翻折,

BEEF1BCCF,∠EFC90°

∵∠BAC45°,∠EFC90°

∴∠EAF=∠AEF45°

AFEF1

AE

AB+1BCCF

BDAB2+

OD

SCDF×CF×DO

SCDF

故答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+2x+c的圖象經(jīng)過點C(0,3),與x軸分別交于點A,點B(3,0).點P是直線BC上方的拋物線上一動點.

(1)求二次函數(shù)y=ax2+2x+c的表達式;

(2)連接PO,PC,并把POC沿y軸翻折,得到四邊形POP′C.若四邊形POP′C為菱形,請求出此時點P的坐標;

(3)當點P運動到什么位置時,四邊形ACPB的面積最大?求出此時P點的坐標和四邊形ACPB的最大面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線yx2+bx+c與直線yx交于(1,1)和(33)兩點,現(xiàn)有以下結(jié)論:b24c0;3b+c+60x2+bx+c時,x2;1x3時,x2+b1x+c0,其中正確的序號是( 。

A. ①②④B. ②③④C. ②④D. ③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)yax2+bx+cab,c為常數(shù),且a≠0)中的xy的部分對應值如表:

X

1

0

1

3

y

3

3

下列結(jié)論:

1abc0

2)當x1時,y的值隨x值的增大而減;

316a+4b+c0;

4)拋物線與坐標軸有兩個交點;

5x3是方程ax2+b1x+c0的一個根;

其中正確的個數(shù)為( 。

A.5B.4C.3D.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC內(nèi)接于⊙O,且ABAC,直徑ADBC于點EFOE上的一點,使CFBD

1)求證:BECE;

2)若BC8AD10,求四邊形BFCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,點PAD延長線上一點,連接AC、CP,F(xiàn)AB邊上一點,滿足CFCP,過點BBMCF,分別交AC、CF于點M、N

(1)若AC=AP,AC=4,求ACP的面積;

(2)若BC=MC,證明:CP﹣BM=2FN.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是數(shù)值轉(zhuǎn)換機的示意圖,小明按照其對應關系畫出了yx的函數(shù)圖象(如圖):

1)分別寫出當0≤x≤4x4時,yx的函數(shù)關系式:

2)求出所輸出的y的值中最小一個數(shù)值;

3)寫出當x滿足什么范圍時,輸出的y的值滿足3≤y≤6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,直徑ADBC于點E,延長AD至點F,使DF2OD,連接FC并延長交過點A的切線于點G,且滿足AGBC,連接OC,若cosBAC,BC6

1)求證:∠COD=∠BAC

2)求⊙O的半徑OC;

3)求證:CF是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】自行車因其便捷環(huán)保深受人們喜愛,成為日常短途代步與健身運動首選.如圖1是某品牌自行車的實物圖,圖2是它的簡化示意圖.經(jīng)測量,車輪的直徑為,中軸軸心到地面的距離,后輪中心與中軸軸心連線與車架中立管所成夾角,后輪切地面于點.為了使得車座到地面的距離,應當將車架中立管的長設置為_____________.

(參考數(shù)據(jù):

查看答案和解析>>

同步練習冊答案