【題目】某茶具店購進(jìn)了A、B兩種不同的茶具,1套A種茶具和2套B種茶具共需250元;3套A種茶具和4套B種茶具共需600元.
(1)求A、B兩種茶具每套的進(jìn)價(jià)分別是多少元?
(2)由于茶具暢銷,茶具店準(zhǔn)備再購進(jìn)A、B兩種茶具共80套,但這次進(jìn)貨時(shí),工廠對(duì)A種茶具每套進(jìn)價(jià)提高了8%,而B種茶具每套按第一次進(jìn)價(jià)的八折,若茶具店本次進(jìn)貨總錢數(shù)不超過6240元,則最多可進(jìn)A種茶具幾套?
(3)若銷售一套A種茶具可獲利30元,銷售一套B種茶其可獲利20元,在(2)的條件下,如何進(jìn)貨可使本次購進(jìn)茶具獲利最多?最多是多少?
【答案】(1)A、B 兩種茶具每套的進(jìn)價(jià)分別是100元和75元
(2)30套
(3)進(jìn)30套A種茶具,50套B種茶具;獲利最多為1900元
【解析】
(1)根據(jù)題意,列出二元一次方程組,從而可以得到A、B兩種茶具每套的進(jìn)價(jià)分別是多少元;
(2)根據(jù)題意,可以得到相應(yīng)的不等式,從而可以得到購買A種茶具數(shù)量的取值范圍,然后即可得到最多可進(jìn)A種茶具幾套;
(3)根據(jù)題意,可以得到利潤(rùn)與購買A種數(shù)量的函數(shù)關(guān)系,然后根據(jù)一次函數(shù)的性質(zhì),即可得到如何進(jìn)貨可使本次購進(jìn)茶具獲利最多,最多是多少.
(1)設(shè) A、B 兩種茶具每套的進(jìn)價(jià)分別是x元、y元,根據(jù)題意,可得
解得
答:A、B 兩種茶具每套的進(jìn)價(jià)分別是100元和75元.
(2)設(shè)購進(jìn)A種茶具a套,根據(jù)題意,可得
.
解得.
答:最多可進(jìn) A 種茶具30套.
(3)設(shè)獲利為w元,則
.
∵,所以w隨的增大而增大.
∵,∴當(dāng) 時(shí), (元)
此時(shí),,
答:進(jìn)30套A種茶具,50套B種茶具,可使本次購進(jìn)茶具獲利最多,獲利最多為1900元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)開設(shè)的體育選修課有籃球、足球、排球、羽毛球、乒乓球,學(xué)生可以根據(jù)自己的愛好選修其中1門.某班班主任對(duì)全班同學(xué)的選課情況進(jìn)行了調(diào)查統(tǒng)計(jì),制成了兩幅不完整的統(tǒng)計(jì)圖(圖(1)和圖(2)):
(1)請(qǐng)你求出該班的總?cè)藬?shù),并補(bǔ)全條形圖(注:在所補(bǔ)小矩形上方標(biāo)出人數(shù));
(2)在該班團(tuán)支部4人中,有1人選修排球,2人選修羽毛球,1人選修乒乓球.如果該班班主任要從他們4人中任選2人作為學(xué)生會(huì)候選人,那么選出的兩人中恰好有1人選修排球、1人選修羽毛球的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店在年至年期問銷售一種禮盒,年該商店川萬元購進(jìn)了這種禮盒并且全部售完.年這種禮盒的進(jìn)價(jià)比年下降了元/盒,該商店用萬元購進(jìn)了與年相同數(shù)量的禮盒也全部售完,禮盒的售價(jià)均為元/盒
(1)年這種禮盒的進(jìn)價(jià)是多少元/盒?
(2)若該商店每年銷售這種禮盒所獲利潤(rùn)的年增長(zhǎng)率相同,問年增長(zhǎng)率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了慶祝建國(guó)七十周年,決定舉辦一臺(tái)文藝晚會(huì),為了了解學(xué)生最喜愛的節(jié)目形式,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,規(guī)定每人從“歌曲”,“舞蹈”,“小品”,“相聲”和“其它”五個(gè)選項(xiàng)中選擇一個(gè),并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖表,請(qǐng)根據(jù)圖中信息,解答下列題:
最喜愛的節(jié)目 | 人數(shù) |
歌曲 | 15 |
舞蹈 | a |
小品 | 12 |
相聲 | 10 |
其它 | b |
(1)在此次調(diào)查中,該校一共調(diào)查了 名學(xué)生;
(2)a= ;b= ;
(3)在扇形計(jì)圖中,計(jì)算“歌曲”所在扇形的圓心角的度數(shù);
(4)若該校共有1200名學(xué)生,請(qǐng)你估計(jì)最喜愛“相聲”的學(xué)生的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】婷婷和她媽媽玩猜拳游戲.規(guī)定每人每次至少要出一個(gè)手指,兩人出拳的手指數(shù)之和為偶數(shù)時(shí)婷婷獲勝.那么,婷婷獲勝的概率為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某初中課外興趣活動(dòng)小組對(duì)某水稻品種的稻穗谷粒數(shù)目進(jìn)行調(diào)查,從試驗(yàn)田中隨機(jī)抽取了30株,得到的數(shù)據(jù)如下(單位:顆):
182 | 195 | 201 | 179 | 208 | 204 | 186 | 192 | 210 | 204 |
175 | 193 | 200 | 203 | 188 | 197 | 212 | 207 | 185 | 206 |
188 | 186 | 198 | 202 | 221 | 199 | 219 | 208 | 187 | 224 |
(1)對(duì)抽取的30株水稻稻穗谷粒數(shù)進(jìn)行統(tǒng)計(jì)分析,請(qǐng)補(bǔ)全下表中空格,并完善直方圖:
谷粒顆數(shù) | 175≤x<185 | 185≤x<195 | 195≤x<205 | 205≤x<215 | 215≤x<225 |
頻數(shù) | 8 | 10 | 3 | ||
對(duì)應(yīng)扇形 圖中區(qū)域 | D | E | C |
(2)如圖所示的扇形統(tǒng)計(jì)圖中,扇形A對(duì)應(yīng)的圓心角為 度,扇形B對(duì)應(yīng)的圓心角為 度;
(3)該試驗(yàn)田中大約有3000株水稻,據(jù)此估計(jì),其中稻穗谷粒數(shù)大于或等于205顆的水稻有多少株?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的二次函數(shù)(>0)的圖象經(jīng)過點(diǎn)C(0,1),且與軸交于不同的兩點(diǎn)A、B,點(diǎn)A的坐標(biāo)是(1,0).
(1)求c的值和,之間的關(guān)系式;
(2)求的取值范圍;
(3)該二次函數(shù)的圖象與直線交于C、D兩點(diǎn),設(shè) A、B、C、D四點(diǎn)構(gòu)成的四邊形的對(duì)角線相交于點(diǎn)P,記△PCD的面積為S1,△PAB的面積為S2,當(dāng)0<<l時(shí),求證:S1-S2為常數(shù),并求出該常數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,以為直徑的交于點(diǎn),交于點(diǎn),為延長(zhǎng)線上一點(diǎn),且,連接.
(1)求證:是的切線;
(2)若,,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),經(jīng)過點(diǎn)C的切線交AB的延長(zhǎng)線于點(diǎn)E,AD⊥EC交EC的延長(zhǎng)線于點(diǎn)D,AD交⊙O于F,F(xiàn)M⊥AB于H,分別交⊙O、AC于M、N,連接MB,BC.
(1)求證:AC平分∠DAE;
(2)若cosM=,BE=1,①求⊙O的半徑;②求FN的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com