如圖,⊙O1與⊙O2相交于AB兩點(diǎn),AC切⊙O1于點(diǎn)A,交⊙O2于點(diǎn)C;BD切⊙O2于點(diǎn)B,交⊙O1于點(diǎn)D,連結(jié)ABAD、BC

(1)求證:AB2=AD·BC;

(2)若∠C=D,問四邊形ABCD是什么四邊形?請(qǐng)加以證明.

 

答案:
解析:

(1)∵ DB是⊙O2的切線,∴ ∠DBA=C

同理∠CAB=D.                            2

∴ △BDA∽△CAB,

AB2=AD·BC.                            4

(2)∵ △BDA∽△CAB,∴ ∠DAB=ABC.                5

又∠D=C,∠D=BAC,∠C=DBA,

∴ ∠DBA=BAC,

∴ ∠DBC=CAD.                           8

∴ 四邊形ADBC是平行四邊形.                     9分

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

12、已知:如圖,⊙O1與⊙O2外切于點(diǎn)P,直線AB過點(diǎn)P交⊙O1于A,交⊙O2于B,點(diǎn)C、D分別為⊙O1、⊙O2上的點(diǎn),且∠ACP=65°,則∠BDP=
65
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,⊙O1與⊙O2外切于M點(diǎn),AF是兩圓的外公切線,A、B是切點(diǎn),DF經(jīng)過O1、O2,分別交⊙O1于D、⊙O2于E,AC是⊙O1的直徑,BC經(jīng)過M點(diǎn),連接AD.
(1)求證:AD∥BC;
(2)求證:MF2=AF•BF;
(3)如果⊙O1的直徑長(zhǎng)為8,tan∠ACB=
34
,求⊙O2的直徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O1與⊙O2相交于C、D兩點(diǎn),⊙O1的割線PAB與DC的延長(zhǎng)線交于點(diǎn)P,PN與⊙O2相切于點(diǎn)N,若PB=10,AB=6,則PN=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,⊙O1與⊙O2外切于A點(diǎn),直線l與⊙O1、⊙O2分別切于B,C點(diǎn),若⊙O1的半徑r1=2cm,⊙O2的半徑r2=3cm.求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知如圖:⊙O1與⊙O2相交于AB兩點(diǎn),過點(diǎn)A、B的直線分別與⊙O1交于C、E,與⊙O2交于D、F,連接CE、DF.
求證:CE∥DF.

查看答案和解析>>

同步練習(xí)冊(cè)答案