【題目】下列四個(gè)三角形中,與圖中的三角形相似的是( )

A.
B.
C.
D.

【答案】B
【解析】解:設(shè)單位正方形的邊長(zhǎng)為1,給出的三角形三邊長(zhǎng)分別為 ,2 ,
A、三角形三邊2, ,3 ,與給出的三角形的各邊不成比例,故A選項(xiàng)錯(cuò)誤;
B、三角形三邊2,4,2 ,與給出的三角形的各邊成正比例,故B選項(xiàng)正確;
C、三角形三邊2,3, ,與給出的三角形的各邊不成比例,故C選項(xiàng)錯(cuò)誤;
D、三角形三邊 ,4, ,與給出的三角形的各邊不成比例,故D選項(xiàng)錯(cuò)誤.
故選:B.
【考點(diǎn)精析】通過靈活運(yùn)用相似三角形的性質(zhì)和相似三角形的判定,掌握對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的兩個(gè)三角形叫做相似三角形;相似三角形的判定方法:兩角對(duì)應(yīng)相等,兩三角形相似(ASA);直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似; 兩邊對(duì)應(yīng)成比例且夾角相等,兩三角形相似(SAS);三邊對(duì)應(yīng)成比例,兩三角形相似(SSS)即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】飛機(jī)著陸后滑行的距離S(單位:m)關(guān)于滑行時(shí)間t(單位:s)的函數(shù)解析式是:S=60t﹣1.5t2
(1)直接指出飛機(jī)著陸時(shí)的速度;
(2)直接指出t的取值范圍;
(3)畫出函數(shù)S的圖象并指出飛機(jī)著陸后滑行多遠(yuǎn)才能停下來?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某市有一塊長(zhǎng)為(2a+b)米,寬為(a+b)米的長(zhǎng)方形地塊,規(guī)劃部門計(jì)劃將陰影部分進(jìn)行綠化,中間將修建一座雕像.

(1)試用含ab的代數(shù)式表示綠化的面積是多少平方米?

(2)若a=3,b=2,請(qǐng)求出綠化面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,現(xiàn)將一張矩形ABCD的紙片一角折疊,若能使點(diǎn)D落在AB邊上F處,折痕為CE,恰好∠AEF=60°,延長(zhǎng)EF交CB的延長(zhǎng)線于點(diǎn)G.

(1)求證:△CEG是等邊三角形;
(2)若矩形的一邊AD=3,求另一邊AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)O是等邊ABC內(nèi)一點(diǎn).將BOC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)60°ADC,連接OD.已知AOB=110°

1)求證:COD是等邊三角形;

2)當(dāng)α=150°時(shí),試判斷AOD的形狀,并說明理由;

3)探究:當(dāng)α為多少度時(shí),AOD是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC的平分線BF與△ABC的外角平分線CF相交于點(diǎn)F,過FDF∥BC,交ABD,交ACE。

1)寫出圖中所有的等腰三角形,并選擇其中一個(gè)說明理由。

2)直接寫出BD,CE,DE之間的數(shù)量關(guān)系。

3)若DE=5cm,CE=8cmBF=24cm,求△BDF的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABCD中,E是AD上一點(diǎn),AE=AB,過點(diǎn)E作直線EF,在EF上取一點(diǎn)G,使得∠EGB=∠EAB,連接AG.

(1)如圖1,當(dāng)EF與AB相交時(shí),若EAB=60°,求證:EG=AG+BG;

(2)如圖2,當(dāng)EF與AB相交時(shí),若∠EAB=α(0°<α<90°),請(qǐng)你直接寫出線段EG、AG、BG之間的數(shù)量關(guān)系(用含α的式子表示);

(3)如圖3,當(dāng)EF與CD相交時(shí),且EAB=90°,請(qǐng)你寫出線段EG、AG、BG之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,若四邊形ABCD、四邊形GFED都是正方形,AD=4, ,當(dāng)正方形GFED繞D旋轉(zhuǎn)到如圖的位置,點(diǎn)F在邊AD上,延長(zhǎng)CE交AG于H,交AD于M.則CM的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)完證明(二)一章后,老師布置了一道思考題:如圖,點(diǎn)M、N分別在正三角形ABC的邊BCCA上,且BM=CN,AM、BN交于點(diǎn)Q。求證:∠BQM=60°。

1)請(qǐng)你完成這道思考題;

2)做完(1)后,同學(xué)們?cè)诶蠋煹膯l(fā)下進(jìn)行了反思,提出了許多問題,如:

若將題中“BM=CN”“∠BQM=60°”的位置交換,得到的是否仍是真命題?

若將題中的點(diǎn)MN分別移動(dòng)到BC,CA的延長(zhǎng)線上,是否仍能得到∠BQM60°?

若將題中的條件點(diǎn)MN分別在正三角形ABCBC、CA邊上改為點(diǎn)M,N分別在正方形ABCDBCCD邊上,是否仍能得到∠BQM60°?對(duì)進(jìn)行證明。(自己畫出對(duì)應(yīng)的圖形)

查看答案和解析>>

同步練習(xí)冊(cè)答案