【題目】如圖,已知拋物線的頂點為P1,4),拋物線與y軸交于點C0,3),與x軸交于A、B兩點.

1)求此拋物線的解析式;

2)求四邊形OBPC的面積.

【答案】(1) y=-x2+2x+3;(2) S四邊形OBPC= 7.5

【解析】

1)設(shè)這個拋物線的解析式為y=ax-12+4,根據(jù)拋物線與y軸交于點C03),求出a即可求出拋物線的解析式;(2)連接PO,當y=0時即可求出與x軸的交點,即可求出四邊形OBPC的面積.

(1)設(shè)這個拋物線的解析式為y=ax-12+4

∵拋物線過B0,3)點,

3=a0-12+4,

解得a=-1,

∴這個拋物線的解析式y=-x-12+4=-x2+2x+3

(2)連接PO.y=0時,-x-1)2+4=0

解得x1=3 x2=-1

∴拋物線與x軸的交點坐標為A3,0),B-1,0),

S四邊形OBPC=SPOC+SPOB=×1×3+×3×4=7.5

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的邊長為4,A=60°,E是邊AD的中點,F是邊BC上的一個動點,EG=EF,且∠GEF=60°,則GB+GC的最小值為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形OABC的頂點A(-8,0)、C(0,6),點D是BC邊上的中點,拋物線y=ax2+bx經(jīng)過A、D兩點,如圖所示.

(1)求點D關(guān)于y軸的對稱點D′的坐標及a、b的值;

(2)在y軸上取一點P,使PA+PD長度最短,求點P的坐標;

(3)將拋物線y=ax2+bx向下平移,記平移后點A的對應(yīng)點為A1,點D的對應(yīng)點為D1,當拋物線平移到某個位置時,恰好使得點O是y軸上到A1、D1兩點距離之和OA1+OD1最短的一點,求此拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2018年非洲豬瘟疫情暴發(fā)后,專家預(yù)測,2019年我市豬肉售價將逐月上漲,每千克豬肉的售價y1(元)與月份x1≤x≤12,且x為整數(shù))之間滿足一次函數(shù)關(guān)系,如下表所示.每千克豬肉的成本y2(元)與月份x1≤x≤12,且x為整數(shù))之間滿足二次函數(shù)關(guān)系,且3月份每千克豬肉的成本全年最低,為9元,如圖所示.

月份x

3

4

5

6

售價y1/

12

14

16

18

1)求y1x之間的函數(shù)關(guān)系式.

2)求y2x之間的函數(shù)關(guān)系式.

3)設(shè)銷售每千克豬肉所獲得的利潤為w(元),求wx之間的函數(shù)關(guān)系式,哪個月份銷售每千克豬肉所第獲得的利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊三角形ABC中,BC6cm,射線AGBC,點E從點A出發(fā)沿射線AG1cm/s的速度運動,點F從點B出發(fā)沿射線BC2cm/s的速度運動.如果點E、F同時出發(fā),設(shè)運動時間為t(s)t______s時,以A、C、E、F為頂點四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】規(guī)定:如果關(guān)于x的一元二次方程ax2+bx+c0a≠0)有兩個實數(shù)根,且其中一個根是另一個根的2倍,則稱這樣的方程為倍根方程現(xiàn)有下列結(jié)論

①方程x2+2x80是倍根方程;

②若關(guān)于x的方程x2+ax+20是倍根方程,則a±3;

③若(x3)(mxn)=0是倍根方程,則n6m3n2m;

④若點(mn)在反比例函數(shù)y的圖象上,則關(guān)于x的方程mx23x+n0是倍根方程.

上述結(jié)論中正確的有( 。

A. ①②B. ③④C. ②③D. ②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰△ABC中,ACBC3,AB6,點E從點B沿著射線BA以每秒3個單位的速度運動,過點EBC的平行線交∠ACB的外角平分線CF于點F

1)求證:四邊形BCFE是平行四邊形;

2)當點E是邊AB的中點時,連結(jié)AF,試判斷四邊形AECF的形狀,并說明理由;

3)設(shè)運動時間為t秒,是否存在t的值,使得以△EFC的其中兩邊為邊所構(gòu)造的平行四邊形恰好是菱形?若存在,請求出t的值;若不存在,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,O為坐標原點,點Aa,0),Bm,n),Cpn),其中mp0n0,點A,C在直線y=﹣2x+10上,AC2,OB平分∠AOC

1)求OAC的面積;

2)求證:四邊形OABC是菱形;

3)射線OB上是否存在點P,使得PAC為直角三角形?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題背景:如圖1:在四邊形ADBC中,∠ACB=ADB=90°,AD=BD,探究線段AC、BCCD之間的數(shù)量關(guān)系,小吳同學(xué)探究此問題的思路是:將BCD繞點D,逆時針旋轉(zhuǎn)90°AED處,點B、C分別落在點A、E處(如圖2),易證點C、AE在同一條直線上,并且CDE是等腰直角三角形,所以CE=

CD,從而得出結(jié)論:AC+BC=CD.

1)簡單應(yīng)用:在圖1中,若AC=,BC=2,則CD= .

2)拓展規(guī)律,如圖3,∠ACB=ADB=90°,AD=BD,AC=m,BC=nmn),求CD的長(用含m,n的代數(shù)式表示)

3)如圖4,∠ACB=90°,AC=BC,點PAB的中點,若點E滿足AE=ACCE=CA,QAE的中點,直接寫出線段PQAC的數(shù)量關(guān)系是 .

查看答案和解析>>

同步練習(xí)冊答案