(2012•桂林)如圖,把拋物線y=x2沿直線y=x平移
2
個(gè)單位后,其頂點(diǎn)在直線上的A處,則平移后的拋物線解析式是( 。
分析:首先根據(jù)A點(diǎn)所在位置設(shè)出A點(diǎn)坐標(biāo)為(m,m)再根據(jù)AO=
2
,利用勾股定理求出m的值,然后根據(jù)拋物線平移的性質(zhì):左加右減,上加下減可得解析式.
解答:解:∵A在直線y=x上,
∴設(shè)A(m,m),
∵OA=
2

∴m2+m2=(
2
2,
解得:m=±1(m=-1舍去),
m=1,
∴A(1,1),
∴拋物線解析式為:y=(x-1)2+1,
故選:C.
點(diǎn)評(píng):此題主要考查了二次函數(shù)圖象的幾何變換,關(guān)鍵是求出A點(diǎn)坐標(biāo),掌握拋物線平移的性質(zhì):左加右減,上加下減.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•桂林)如圖,函數(shù)y=ax-1的圖象過點(diǎn)(1,2),則不等式ax-1>2的解集是
x>1
x>1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•桂林)如圖,與∠1是內(nèi)錯(cuò)角的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•桂林)如圖,等圓⊙O1和⊙O2相交于A、B兩點(diǎn),⊙O1經(jīng)過⊙O2的圓心,順次連接A、O1、B、O2
(1)求證:四邊形AO1BO2是菱形;
(2)過直徑AC的端點(diǎn)C作⊙O1的切線CE交AB的延長(zhǎng)線于E,連接CO2交AE于D,求證:CE=2O2D;
(3)在(2)的條件下,若△AO2D的面積為1,求△BO2D的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•桂林)如圖,在邊長(zhǎng)為4的正方形ABCD中,動(dòng)點(diǎn)P從A點(diǎn)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿AB向B點(diǎn)運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從B點(diǎn)出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿BC→CD方向運(yùn)動(dòng),當(dāng)P運(yùn)動(dòng)到B點(diǎn)時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)P點(diǎn)運(yùn)動(dòng)的時(shí)間為t,△APQ的面積為S,則S與t的函數(shù)關(guān)系的圖象是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案