【題目】在平面直角坐標系中,拋物線與y軸交于點.
(1)求c的值;
(2)當時,求拋物線頂點的坐標;
(3)已知點,若拋物線與線段有兩個公共點,結(jié)合函數(shù)圖象,求a的取值范圍.
科目:初中數(shù)學 來源: 題型:
【題目】小波在復習時,遇到一個課本上的問題,溫故后進行了操作、推理與拓展.
(1)溫故:如圖1,在△ABC中,AD⊥BC于點D,正方形PQMN的邊QM在BC上,頂點P,N分別在AB, AC上,若BC=6,AD=4,求正方形PQMN的邊長.
(2)操作:能畫出這類正方形嗎?小波按數(shù)學家波利亞在《怎樣解題》中的方法進行操作:如圖2,任意畫△ABC,在AB上任取一點P′,畫正方形P′Q′M′N′,使Q′,M′在BC邊上,N′在△ABC內(nèi),連結(jié)B N′并延長交AC于點N,畫NM⊥BC于點M,NP⊥NM交AB于點P,PQ⊥BC于點Q,得到四邊形PQMN.小波把線段BN稱為“波利亞線”.
(3)推理:證明圖2中的四邊形PQMN 是正方形.
(4)拓展:在(2)的條件下,于波利業(yè)線B N上截取NE=NM,連結(jié)EQ,EM(如圖3).當tan∠NBM=時,猜想∠QEM的度數(shù),并嘗試證明.
請幫助小波解決“溫故”、“推理”、“拓展”中的問題.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在和中,,直線與交于點.
(1)如圖1,若,填空:①的值為____________;
②的度數(shù)為___________.
(2)如圖2,若,求的值(用含的式子表示)及的度數(shù);
(3)若,,,將三角形繞著點在平面內(nèi)旋轉(zhuǎn),直接寫出當點、、在同一直線上時,線段的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】準備一張矩形紙片,按如圖操作:
將△ABE沿BE翻折,使點A落在對角線BD上的M點,將△CDF沿DF翻折,使點C落在對角線BD上的N點.
(1)求證:四邊形BFDE是平行四邊形;
(2)若四邊形BFDE是菱形,BE=2,求菱形BFDE的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】正方形的邊長為4,點在對角線上(可與點重合),,點在正方形的邊上.下面四個結(jié)論中,
①存在無數(shù)個四邊形是平行四邊形;
②存在無數(shù)個四邊形是菱形;
③存在無數(shù)個四邊形是矩形;
④至少存在一個四邊形是正方形.
所有正確結(jié)論的序號是_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】解不等式組
請結(jié)合題意填空,完成本題的解答.
(1)解不等式①,得 ;
(2)解不等式②,得 ;
(3)把不等式①和②的解集在數(shù)軸上表示出來:
(4)原不等式組的解集為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,現(xiàn)給以下結(jié)論:①abc<0;②c+2a<0;③9a﹣3b+c=0;④a﹣b≥m(am+b)(m為實數(shù));⑤4ac﹣b2<0.其中錯誤結(jié)論的個數(shù)有( 。
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線與軸的正半軸交于點A,拋物線的頂點為B,直線經(jīng)過A,B兩點,且.
(1)求拋物線的解析式
(2)點P在第一象限內(nèi)對稱軸右側(cè)的拋物線上,其橫坐標為,連接OP,交對稱軸于點C,過點C作軸,交直線于點,連接,設線段的長為,求與之間的函數(shù)關系式,并直接寫出自變量的取值范圍;
(3)在(2)的條件下,點在線段上,連接,交于點F,點G是BE的中點,過點G作軸,交的延長線于點,當且時,求點的坐標;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】張老師將自己2019年10月至2020年5月的通話時長(單位:分鐘)的有關數(shù)據(jù)整理如下:
①2019年10月至2020年3月通話時長統(tǒng)計表
時間 | 10月 | 11月 | 12月 | 1月 | 2月 | 3月 |
時長(單位:分鐘) | 520 | 530 | 550 | 610 | 650 | 660 |
②2020年4月與2020年5月,這兩個月通話時長的總和為1100分鐘根據(jù)以上信息,推斷張老師這八個月的通話時長的中位數(shù)可能的最大值為( )
A.550B.580C.610D.630
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com