【題目】如圖,已知函數(shù)的圖象與x軸、y軸分別交于點(diǎn)A,B,與函數(shù)y=x的圖象交于點(diǎn)M,點(diǎn)M的橫坐標(biāo)為2.在x軸上有一點(diǎn)P (a,0)(其中a>2),過點(diǎn)P作x軸的垂線,分別交函數(shù)和y=x的圖象于點(diǎn)C,D.

(1)求點(diǎn)A的坐標(biāo);

(2)若OB=CD,求a的值.

【答案】(1)(6,0);(2)4.

【解析】

試題(1)根據(jù)M在y=x上,將橫坐標(biāo)x=2帶入,求M坐標(biāo),然后再帶入,求b,再將y=0代入求A點(diǎn)橫坐標(biāo)即可.

(2)P、C、D三點(diǎn)所在直線垂直于x軸,三點(diǎn)的橫坐標(biāo)相同,利用橫坐標(biāo)代入相應(yīng)解析式求C、D坐標(biāo),得CD長,再根據(jù)CD=OB,即可求a值.

試題解析:解:(1)點(diǎn)M在y=x上,將橫坐標(biāo)x=2帶入,得y=2M(2,2).

將M(2,2) 帶入,得b=3,

當(dāng)y=0時(shí),,即,解x=6 A點(diǎn)坐標(biāo)為(6,0).

(2)P、C、D三點(diǎn)所在直線垂直于x軸,三點(diǎn)的橫坐標(biāo)相同。均為a.

依題得C,D(a,a)

CD=OB,,解得a=4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的直徑AB=4,∠ABC=30°,BC交⊙O于D,D是BC的中點(diǎn).

(1)求BC的長;
(2)過點(diǎn)D作DE⊥AC,垂足為E,求證:直線DE是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是正方形ABCD的對角線BD上一點(diǎn),PEBC,PFCD,垂足分別為點(diǎn)E,F(xiàn),連接AP,EF,給出下列四個(gè)結(jié)論

AP=EF;②∠PFE=BAP;PD=EC;④△APD一定是等腰三角形.

其中正確的結(jié)論有( ).

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,畫一個(gè)長和寬分別為、的長方形,并將其按一定的方式進(jìn)行旋轉(zhuǎn).

你能得到幾種不同的圓柱體?

把一個(gè)平面圖形旋轉(zhuǎn)成幾何體,必須明確哪兩個(gè)條件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=kxb的圖象經(jīng)過點(diǎn)A(0,2)和點(diǎn)B(a3),且點(diǎn)B在正比例函數(shù)y=3x的圖象上.

(1)a的值;

(2)求一次函數(shù)的解析式并畫出它的圖象;

(3)P(m,y1)Q(m1,y2)是這個(gè)一次函數(shù)圖象上的兩點(diǎn),試比較y1y2的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】山地自行車越來越受到中學(xué)生的喜愛,各種品牌相繼投放市場,某車行經(jīng)營的A型車去年銷售總額為5萬元,今年每輛銷售價(jià)比去年降低400元,若賣出的數(shù)量相同,銷售總額將比去年減少20%.

(1)今年A型車每輛售價(jià)多少元?(用列方程的方法解答)

(2)該車行計(jì)劃新進(jìn)一批A型車和新款B型車共60輛,且B型車的進(jìn)貨數(shù)量不超過A型車數(shù)量的兩倍,應(yīng)如何進(jìn)貨才能使這批車獲利最多?

A,B兩種型號車的進(jìn)貨和銷售價(jià)格如下表:

A型車

B型車

進(jìn)貨價(jià)格(元)

1100

1400

銷售價(jià)格(元)

今年的銷售價(jià)格

2000

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AECD相交于點(diǎn)B,射線BF平分∠ABC,射線BG在∠ABD內(nèi),

(1)若∠DBE的補(bǔ)角是它的余角的3倍,求∠DBE的度數(shù);

(2)在(1)的件下,若∠DBG=∠ABG﹣33°,求∠ABG的度數(shù);

(3)若∠FBG=100°,求∠ABG和∠DBG的度數(shù)的差.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們規(guī)定:在正方形ABCD中,以正方形的一個(gè)頂點(diǎn)A為頂點(diǎn),且過對角頂點(diǎn)C的拋物線,稱為這個(gè)正方形的以A為頂點(diǎn)的對角拋物線.
(1)在平面直角坐標(biāo)系xOy中,點(diǎn)在軸正半軸上,點(diǎn)C在y軸正半軸上.
①如圖1,正方形OABC的邊長為2,求以O(shè)為頂點(diǎn)的對角拋物線;
②如圖2,在平面直角坐標(biāo)系xOy中,正方形OABC的邊長為a,其以O(shè)為頂點(diǎn)的對角拋物線的解析式為y= x2 , 求a的值;

(2)如圖3,正方形ABCD的邊長為4,且點(diǎn)A的坐標(biāo)為(3,2),正方形的四條對角拋物線在正方形ABCD內(nèi)分別交于點(diǎn)M、P、N、Q,直接寫出四邊形MPNQ的形狀和四邊形MPNQ的對角線的交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是圓O的直徑,C,D是圓O上的點(diǎn),且OC∥BD,AD分別與BC,OC相交于點(diǎn)E,F(xiàn).則下列結(jié)論:
①AD⊥BD;②∠AOC=∠ABC;③CB平分∠ABD;④AF=DF;⑤BD=2OF.
其中一定成立的是(

A.①③⑤
B.②③④
C.②④⑤
D.①③④⑤

查看答案和解析>>

同步練習(xí)冊答案