【題目】一般情況下,學(xué)生注意力上課后逐漸增強,中間有段時間處于較理想的穩(wěn)定狀態(tài),隨后開始分散.實驗結(jié)果表明,學(xué)生注意力指數(shù)y隨時間x(min)的變化規(guī)律如圖所示(其中AB、BC分別為線段,CD為雙曲線的一部分):

(1)上課后第5min與第30min相比較,何時學(xué)生注意力更集中?

(2)某道難題需連續(xù)講19min,為保證效果,學(xué)生注意力指數(shù)不宜低于36,老師能否在所需要求下講完這道題?

【答案】(1)第30分鐘注意力更集中;(2)能

【解析】

試題分析:(1)先用代定系數(shù)法分別求出AB和CD的函數(shù)表達式,再分別求第五分鐘和第三十分鐘的注意力指數(shù),最后比較判斷;

(2)分別求出注意力指數(shù)為36時的兩個時間,再將兩時間之差和19比較,大于19則能講完,否則不能.

試題解析:(1)設(shè)線段AB所在的直線的解析式為y1=k1x+20,把B(10,40)代入得,k1=2,y1=2x+20.

設(shè)C、D所在雙曲線的解析式為,把C(25,40)代入得,k2=1000,y2=當(dāng)x1=5時,y1=2×5+20=30,當(dāng)x2=30時,y2==y1y2

第30分鐘注意力更集中.

(2)令y1=36,36=2x+20,x1=8

令y2=36,36=x2=27.8,27.8﹣8=19.819,經(jīng)過適當(dāng)安排,老師能在學(xué)生注意力達到所需的狀態(tài)下講解完這道題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊三角形ABC中,點D,E分別在邊BC,AC上,且DE∥AB,過點E作EF⊥DE,交BC的延長線于點F.
(1)求∠F的度數(shù);
(2)若CD=2,求DF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市甲、乙兩個汽車銷售公司,去年一至十月份每月銷售同種品牌汽車的情況如圖所示:

(1)請你根據(jù)上圖填寫下表.

銷售公司

平均數(shù)

方差

中位數(shù)

眾數(shù)

9

9

17.0

8


(2)請你從以下兩個不同的方面對甲、乙兩個汽車銷售公司去年一至十月份的銷售情況進行分析:①從平均數(shù)和方差結(jié)合看;②從折線圖上甲、乙兩個汽車銷售公司銷售數(shù)量的趨勢看(分析哪個汽車銷售公司較有潛力).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點A是雙曲線在第三象限分支上的一個動點,連結(jié)AO并延長交另一分支于點B,以AB為邊作等邊三角形ABC,點C在第四象限內(nèi),且隨著點A的運動,點C的位置也在不斷變化,但點C始終在雙曲線上運動,則k的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一條公共邊,另一邊_______,具有這種位置關(guān)系的兩個角互為鄰補角.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)完第2章“特殊的三角形”后,老師布置了一道思考題:
如圖,點M、N分別在正三角形ABC的BC,CA邊上,且BM=CN,AM,BN交于點Q.

(1)判斷△ABM與△BCN是否全等,并說明理由.
(2)判斷∠BQM是否會等于60°,并說明理由.
(3)若將題中的點M,N分別移動到BC,CA的延長線上,且BM=CN,是否能得到∠BQM=60°?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果兩條直線相交所成的四個角中的任意一個角等于___,那么這兩條直線互相垂直.其中的一條直線叫做另一條直線的_____,它們的交點叫做______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點M(﹣2,3)在(
A.第一象限
B.第二象限
C.第三象限
D.第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在以下現(xiàn)象中,屬于平移的是(
①在擋秋千的小朋友;②打氣筒打氣時,活塞的運動;③鐘擺的擺動;④傳送帶上,瓶裝飲料的移動.
A.①②
B.①③
C.②③
D.②④

查看答案和解析>>

同步練習(xí)冊答案