【題目】如圖,在△ABC中,∠B=90°,AB=21,BC=20,有一個半徑為10的圓分別與AB、BC相切,則此圓的圓心是(
A.AB邊的中垂線與BC中垂線的交點
B.∠B的平分線與AB的交點
C.∠B的平分線與AB中垂線的交點
D.∠B的平分線與BC中垂線的交點

【答案】D
【解析】解:∵圓分別與AB、BC相切, ∴圓心到AB、CB的距離都等于半徑,
∵到角的兩邊距離相等的點在角的平分線上,
∴圓心定在∠B的角平分線上,
∵因為圓的半徑為10,
∴圓心到AB的距離為10,
∵BC=20,
又∵∠B=90°,
∴BC的中垂線上的點到AB的距離為10,
∴∠B的角平分線與BC的中垂線的交點即為圓心.
故選D.
【考點精析】掌握線段垂直平分線的性質(zhì)和勾股定理的概念是解答本題的根本,需要知道垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點和這條線段兩個端點的距離相等;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】同慶中學為豐富學生的校園生活,準備從軍躍體育用品商店一次性購買若干個足球和籃球(每個足球的價格相同,每個籃球的價格相同),若購買3個足球和2個籃球共需310元,購買2個足球和5個籃球共需500元.
(1)購買一個足球、一個籃球各需多少元?
(2)根據(jù)同慶中學的實際情況,需從軍躍體育用品商店一次性購買足球和籃球共96個,要求購買足球和籃球的總費用不超過5720元,這所中學最多可以購買多少個籃球?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑作半圓⊙O,交BC于點D,連接AD,過點D作DE⊥AC,垂足為點E,交AB的延長線于點F.
(1)求證:EF是⊙0的切線.
(2)如果⊙0的半徑為5,sin∠ADE= ,求BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,與x軸的一個交點坐標為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:
①4ac<b2;
②方程ax2+bx+c=0的兩個根是x1=﹣1,x2=3;
③3a+c>0
④當y>0時,x的取值范圍是﹣1≤x<3
⑤當x<0時,y隨x增大而增大
其中結(jié)論正確的個數(shù)是( )

A.4個
B.3個
C.2個
D.1個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△AOB中,∠AOB為直角,OA=6,OB=8,半徑為2的動圓圓心Q從點O出發(fā),沿著OA方向以1個單位長度/秒的速度勻速運動,同時動點P從點A出發(fā),沿著AB方向也以1個單位長度/秒的速度勻速運動,設(shè)運動時間為t秒(0<t≤5)以P為圓心,PA長為半徑的⊙P與AB、OA的另一個交點分別為C、D,連結(jié)CD、QC.

(1)當t為何值時,點Q與點D重合?
(2)當⊙Q經(jīng)過點A時,求⊙P被OB截得的弦長.
(3)若⊙P與線段QC只有一個公共點,求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某班男生分成甲、乙兩組進行引體向上的專項訓練,已知甲組有6名男生,并對兩組男生訓練前,后引體向上的個數(shù)進行統(tǒng)計分析,得到乙組男生訓練前,后引體向上的平均個數(shù)分別是6個和10個,及下面不完整的統(tǒng)計表和圖的統(tǒng)計圖.
甲組男生訓練前、后引體向上個數(shù)統(tǒng)計表(單位:個)

甲組

男生A

男生B

男生C

男生D

男生E

男生F

平均個數(shù)

眾數(shù)

中位數(shù)

訓練前

4

6

4

3

5

2

4

b

4

訓練后

8

9

6

6

7

6

a

6

c


(1)根據(jù)以上信息,解答下列問題: a= , b= , c=;
(2)甲組訓練后引體向上的平均個數(shù)比訓練前增長了%;
(3)你認為哪組訓練效果好?并提供一個支持你觀點的理由;
(4)小華說他發(fā)現(xiàn)了一個錯誤:“乙組訓練后引體向上個數(shù)不變的人數(shù)占到該組人數(shù)的50%,所以乙組的平均個數(shù)不可能提高4個之多.:你同意他的觀點嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖的△ABC中有一正方形DEFG,其中D在AC上,E、F在AB上,直線AG分別交DE、BC于M、N兩點.若∠B=90°,AB=4,BC=3,EF=1,則BN的長度為何?(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在以O(shè)為原點的直角坐標系中,矩形OABC的兩邊OC、OA分別在x軸、y軸的正半軸上,反比例函數(shù)y= (x>0)與AB相交于點D,與BC相交于點E,若BD=3AD,且△ODE的面積是9,則k=(
A.
B.
C.
D.12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=mx+n與雙曲線y=相交于A(﹣1,2),B(2,b)兩點,與y軸相交于點C

(1)求m,n的值
(2)若點D與點C關(guān)于x軸對稱,求ABD的面積

查看答案和解析>>

同步練習冊答案